
| 1  

THE SMARTER EDGE

Z

Volume 2, Issue 3

MAKING THE
CASE FOR A 
SMARTER EDGE

AI PROCESSING
AT THE EDGE

BUILDING AI
INTO EDGE
HARDWARE

DATA SECURITY
IN A LARGER EDGE-
CLOUD MODEL

p. 10 p. 18 p. 35 p.  46



2 |



| 3  

In This Issue

A View from the Edge: An Introduction to the 
Smarter Edge 
by Stephen Evanczuk 

Foreword
by Jason Shepherd

6

4

18
AI at the Edge Requires Balance of Capable, 
Flexible Hardware 
by Stephen Evanczuk

AI Processing for IoT: Where Clouds Give Way 
to a Smart Edge
by Paul Golata

25

Could the Edge End the Connectivity Wars? 
by Bin Jiang, Chaofan Ma, Huifang Xu & Houbing Song30

36
Network Design: Intermediate Interface Nodes  
for Critical IoT Network Applications
by Charles Byers

42 How AI at the Edge Will Change Engineering 
by M. Tim Jones

46 Device Security in a Larger Edge-Cloud Model
by Jeff Fellinge

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other 
products, logos, and company names mentioned herein may be trademarks of their respective 
owners. Reference designs, conceptual illustrations, and other graphics included herein are for 
informational purposes only.

Copyright © 2018 Mouser Electronics, Inc. – A TTI and Berkshire Hathaway company.

10
Making the Case for a Smarter Edge: 
The Six Vs of IoT Data 
by Stephen Evanczuk

Executive Editor

Deborah S. Ray

Contributing Authors

Charles Byers

Steven Evanczuk

Jeff Fellinge

Paul Golata

Bin Jiang

M. Tim Jones

Chaofan Ma

Jason Shepherd

Houbing Song

Huifang Xu

Technical Contributor

Paul Golata

Editiorial Contributor

LaKayla Garrett

Design & Production

Robert Harper

With Special Thanks 

Kevin Hess 

Sr. VP, Marketing

Russell Rasor 

VP, Supplier Marketing

Jack Johnston, Director 

Marketing Communication

Raymond Yin, Director  

Technical Content

Z



4 |

In the history of computing, the 
pendulum has faithfully swung every 
10 to 15 years between centralized 
and distributed models. However, 
given the sheer volume of networked 
devices going forward, we need a 
smarter edge because it simply isn’t 
feasible to send all data directly to 
the cloud. 

IoT Devices Can Be 
Like Teens That Don’t 
Pay the Mounting 
Phone Bill

The articles within this issue 
of Methods talk about latency, 
bandwidth, and security as key 
technical reasons for a smarter 
edge. However, there’s a big kicker—
the “total lifecycle cost” of data. 
People that start with cloud-centric 
analytics often quickly realize that it 
gets expensive fast when chatty IoT 
devices hit public-cloud application-
programming interfaces (APIs). 

The majority of IoT data is 
“perishable,” meaning if you don’t 
create an alert or take action based 
on the data in the moment, it’s 
not going to do you much good 
later. A smarter edge will enable a 
combination of taking action, storing, 
forwarding, and scrapping data on 
the spot.

There are Many 
Edges

So what’s the “edge?” The fact is, 
when you read the articles in this 
issue, you’ll see that there isn’t one 
edge; rather there’s a collection of 
distributed edges.

My simple definition is that edge 
computing is about locating 
computing resources that are 
necessary and feasible to the 
subscribers (that is, the users and 
devices) needing it. Here are some 
examples:

The closest edge to subscribers 
in which a telecommunications 
company can feasibly locate 
significant computing resources at 
the bottom of their cell towers or 
at their baseband units. The article 
titled “Could the Edge End the 
Connectivity Wars?” talks about this 
hot topic.

On-prem edges, which include 
traditional and micromodular 
data centers, hyper-converged 
infrastructure and edge gateways, 
hubs, and routers, are utilized when 
it’s necessary to be on the same 
local network as field devices. These 
edges reduce latency and bandwidth 
consumption and maximize security 
and uptime for mission-critical 
applications. 

The device edge includes sensors, 
actuators, and controllers in the field, 

which gather data from the physical 
world and run processes. The article 
titled “A View from the Edge” talks 
extensively about microcontroller 
unit (MCU)-based smart sensors that 
populate the device edge.

The Fog vs. the Cloud

The term “fog” is foggy in the minds 
of many people. Simply put, the 
fog is the combination of all the 
edges and the networks in between 
effectively everything but the cloud. 
The article titled “Edge Design and 
Deployment: Intermediate Levels 
of Computation, Networking, and 
Storage” discusses fog nodes that 
span a variety of edges, working 
together as a larger computing 
continuum in real time.

Regardless of how we label things, 
we need scalable solutions for a 
smarter, distributed edge that works 
together with public, private, and 
hybrid clouds while meeting the 
needs of operational technology 
(OT) and information technology (IT) 
organizations alike.

We Need a Cloud-
Native Edge for the 
IoT Scale

Key to the concept of cloud-
native is the utilization of modern 
development and operations 
(DevOps), continuous delivery of 
data, loosely-coupled microservices, 
and overall platform-independence. 

Foreword: Realizing the Holy Grail of 
Digital via a Smarter Edge
by Jason Shepherd, CTO of IoT and Edge Computing for Dell Technologies



| 5  

However, cloud-native is more about 
how software is built and deployed 
than where it’s actually run. 

It’s only logical that the same reasons 
that these principles help companies 
develop and deploy massively 
scalable applications in the cloud 
also make the same principles highly 
applicable across all the different 
edges. In fact, I would contend that 
these principles are necessary to 
enable smarter edge designs and 
help enterprises continuously define 
software better as well as create more 
innovative outcomes spanning from 
edge to cloud, all to stay competitive 
in an ever-changing market.

Facilitating an Open, 
Cloud-Native Edge 
Ecosystem

Launched last year by the Linux 
Foundation, the vendor-neutral, 
open-source EdgeX Foundry project 
is building an open framework for 
edge computing to facilitate an 
interoperable cloud-native IoT edge. 
EdgeX brings together devices, 
speaking any mix of connectivity 

protocols, with a growing ecosystem 
of value-added applications in an 
inherently multi-edge and multi-cloud 
world.

Another important effort that will 
help us reach a smarter edge is the 
recently-launched Akraino project, 
which is focused on facilitating open 
interoperability at the telco edge 
infrastructure layer and which will 
eventually extend down to a device 
edge. EdgeX and Akraino are highly 
complementary efforts and are 
spinning up collaboration to make 
sure related APIs are correlated.

Realizing the Holy 
Grail of Digital 

I’ll close with what I see as the 
“Holy Grail of Digital”—selling data, 
resources (for computing, networking, 
energy, etc.) and services (such as 
domain-specific consulting) to people 
you don’t even know. 

Over time, by combining the silicon-
based root of trust; connectivity 
standards; open, defacto-standard 
APIs, established by projects like 
EdgeX and Akraino; and ledger 

technologies (like blockchain) in a 
smarter edge, we’ll build the intrinsic, 
pervasive trust needed for this soon 
coming digital phenomenon. This 
will enable us to create data in the 
physical world, send it out into the 
ether, and then sit back and collect 
checks from complete strangers on 
our terms. This is the scale factor!

We’ll never realize this new 
phenomenon with the current plethora 
of proprietary IoT platforms that are 
trying to lock customers in, thinking 
they can then sell their data. Yes, 
we’ll see walled gardens in consumer 
products, but these walls simply 
do not work for any single entity to 
own the trust of businesses and 
consumers, especially when it comes 
to scaling a system of systems and 
supporting business-to-business 
(B2B) and business-to-business-to-
consumer (B2B2C) use cases that 
span private and public domains. 

My advice is to start small, while also 
investing in open technologies that 
facilitate scale and pervasive trust. We 
live in exciting times, and I can’t wait 
to see how the world makes use of a 
smarter edge!  



6 |

In the Internet of Things (IoT), edge 
computing devices fill a role that on 
the first impression parallels familiar 
network appliances such as Wi-Fi 
routers, smart home hubs, data 
concentrators, and more. The varied 
demands of diverse IoT applications 
drive a more expansive view of 
edge computing as it evolves to 
play a central role in end-to-end IoT 
applications and their underlying 
platforms. Increasingly, IoT edge 
devices are an integral part of 
a fluid application platform that 
binds vast numbers of peripheral 
IoT devices with local- and cloud-
based resources into a complete IoT 
application (Figure 1). 

With expectations of billions of 
sensor devices closely monitoring 
every detail of life and work, the IoT 
presents unparalleled opportunities 
for building a deep understanding 
of the effect of changes in the 
environment, in industrial processes, 
individual products, and ourselves. 
The simultaneous rise of both 
advanced IoT devices and cloud-
based computing resources offers 
an extraordinary platform for 
developing applications able to 
deliver this understanding. The very 
sophistication of those devices 
and resources can paradoxically 
overwhelm efforts to realize the full 
potential of IoT applications. 

Enhanced 
Connectivity

On the device side, increased 
integration of sensors and actuator-
driver chips and modules have 
significantly eased the design of 
peripheral IoT devices. Developers 
no longer need to spend time fine-
tuning sensitive analog signal chains 
to optimize data conversion or to 
compensate for noise, temperature 
or drift in sensor subsystems. 
Smart sensors leverage integrated 
microcontrollers (MCUs) with 
built-in analog peripherals and 
radio transceivers to accurately 
convert sensor signals and wirelessly 

A View from the Edge: 
An Introduction to the Smarter Edge
by Stephen Evanczuk for Mouser Electronics

A new view of IoT edge computing finds these systems serving an expanded 
role well beyond that of data concentrators, network routers, or connection 
hubs used in smart homes. As both IoT devices and cloud resources become 
more sophisticated, this emerging view elevates edge devices to stand as 
a critical component needed to manage complexity, enhance performance, 
and meet evolving end-to-end requirements of IoT applications.

Figure 1: The simultaneous rise of both advanced IoT devices and cloud-based computing resources offers an 
extraordinary platform. (Source: Mouser)

Developers face high data volumes, velocities, and variety found in “big 
data,” along with the subtleties of data variances, vulnerabilities, and veracity. 
In response, there will be a greater dependence on a smarter edge to 
meld the IoT hierarchy into an effective end-to-end solutions platform. 



| 7  

transmit calibrated digital data. At the 
same time, the availability of larger 
memory arrays integrated into these 
devices have enabled manufacturers 
to extend communications support 
beyond integrated physical (PHY) 
and Media Access Control (MAC) 
layers found in earlier devices. 
Developers can take advantage 
of wireless MCUs and modules 
with complete communications 
stacks and even with the ability to 
support multiple connectivity options 
concurrently. Using these fully 
integrated communications solutions, 
developers can create IoT solutions 
more rapidly, focusing less on low-
level operations and more on their 
application requirements. 

The ready availability of diverse 
connectivity options in easy-to-use 
integrated devices serves as one of 
the fundamental enablers for large-
scale IoT applications. The practical 
limitations of exploiting those options 
can sometimes make them seem 
more of a curse than a blessing 
for developers required to connect 
IoT devices to the cloud. Caught 
between the pressure of shrinking 
product windows and the complexity 
of diverse connectivity options, 
developers can find themselves 
forced to go for expediency over 
optimization. Rather than select the 
cloud-connectivity option that best 
meets performance requirements, 
developers can find themselves driven 
to settle for an option already in use at 
the target location or easily supported 
with off-the-shelf Wi-Fi routers, for 
example. 
The evolution of edge devices has 
helped to relax many of the logistical 
constraints that limited selection of 
IoT device connectivity in the past. 
The same industry advances that 
enabled more connectivity options 

in integrated devices have simplified 
the ability to complete the connection 
to the cloud from IoT devices using 
the most suitable connectivity option. 
This greater freedom of choice has 
become particularly important in 
wireless deployments of power-limited 
IoT devices. Developers building 
extended-range IoT networks can 
more easily stay within an individual 
IoT device’s limited power budget, 
using the optimal wireless technology 
needed to meet requirements for 
frequency, rate, and throughput. 

By taking advantage of the broad 
connectivity support of an edge 
device, developers can choose 
technologies such as mesh networks 
where inter-node relays extend the 
physical coverage of a network 
beyond the transmission and receiver 
range of individual low-power IoT 
devices. For connectivity across 
kilometers-long distance, developers 
can turn to sub-GHz low-power wide-
area network technologies such as 
LoRa or SigFox. Using an edge device 
as a communications gateway for 
each connectivity option, developers 
can build optimized hybrid IoT 
networks that combine any number of 
non-IP-based subnetworks with IPv4- 
and IPv6-based subnetworks. 

Besides its ability to support these 
connectivity options on the device 
side, edge devices provide an 
excellent platform for supporting 
wide-area networks with truly global 
coverage. Growing availability of 
low-power narrowband Long-Term 
Evolution (LTE) cellular options from 

chip makers, module suppliers, 
and cellular-service providers lets 
developers enhance edge devices 
with support for Cable and Telephone 
(CAT) M1 or Narrowband IoT (NB-IoT) 
connectivity. This additional option 
offers an increasingly vital feature for 
connecting remote IoT networks to 
the cloud or using cellular services to 
maintain availability in applications 
that must maintain data exchange 
even when primary connections fail to 
the Internet or private network. 

Local Processing

Besides their use in enabling multiple 
connectivity options on the periphery, 
edge devices serve a critical need that 
has emerged with the migration from 
on-premises hosts to cloud services. 
From the viewpoint of a peripheral IoT 
device, the time needed to respond to 
external events can be considerably 
different for an application running on 
on-premises hosts compared to the 
functionally equivalent cloud-based 
application running on cloud services. 
Transactions between the periphery 
and cloud-based applications 
typically face longer communications 
times as well as additional delays 
related to security and other services 
required in a cloud service accessed 
through a public network. 

In early IoT cloud-based applications, 
an incrementally greater lag between 
acquisition of data by sensors and 
the return of data processing results 
might have caused little concern. As 
users became more familiar with IoT 
applications, however, expectations 
have grown for even faster response 
to analysis of ever more complex data 
streams. In closed-loop industrial IoT 
applications, in particular, the longer 
path from IoT sensors to cloud-based 
data-processing software and then 

“In this new view of the IoT, 
edge takes the motivation 
for local processing to 
its natural conclusion.”

[ C O N T ’ D  O N  N E X T  P A G E ]



8 |

finally back to actuators might extend 
response times well beyond control-
loop timing requirements. 

Like programmable logic controllers 
used before them in factory 
automation, edge devices move 
processing closer to data sources. By 
leveraging the processing capabilities 
of edge computing devices, IoT 
application developers can maintain 
the shortest possible latency between 
data generation and software 
response. As a result, developers 
can build industrial IoT applications 
that fully exploit the extensive 
capabilities of cloud resources 
without compromising the low-latency 
response times required in process-
control loops. 

The growing need for serving low-
latency, deterministic-response 
requirements has motivated a 
further evolution of edge devices to 
better align with their role as active 
interfaces between IoT devices and 
the cloud. In this enhanced view, 
edge devices combine the capabilities 
of real-time systems needed to 
match the timing of real-world 
events with the features of general-
purpose systems needed to support 
communications stacks and other 
applications-oriented requirements. 

To serve these dissimilar requirements, 
advanced edge computing systems 
often use embedded hypervisor 
virtualization software to run separate 
partitions for each role. In these 
systems, code requiring low-latency, 
the deterministic response can run 
on a real-time operating system or 
kernel, while application code can run 
on a multitasking operating system 
such as embedded Linux. For more 
demanding requirements, developers 
implement the underlying hardware 
base using multiple MCUs or 

multicore MCUs, combining an MCU 
or core such as Arm® Cortex®-M 
optimized for deterministic real-time 
performance with an application 
processor or core such as the Arm 
Cortex-A designed for general-
purpose computing. 

Service Support

With enhanced local processing and 
storage, edge-system functionality 
further evolved beyond its earlier 
connectivity focus, now providing a 
more intelligent interface between 
IoT devices and cloud resources. To 
support more sophisticated MCU-
based terminal IoT devices, this 
evolution, in turn, encompassed 
additional capabilities. Edge device 
functionality increasingly offers 
greater system-level support for 
IoT devices as well as more refined 
data-processing functionality needed 
to manage the growing flood of 
data created by these devices 
and demanded by higher level 
enterprise applications. Just as local 
processing provided the solution 
for low-latency requirements, it has 
allowed application developers to 
turn massive streams of raw sensor 
data into more manageable flows 
of useful information. Here, data 
service layers in edge devices 
provide application-specific services 
such as synchronizing disparate 
streams, performing sensor fusion, or 
identifying data of special interest for 
processing by local service handlers 
or by upstream services. 

This elevation of edge capabilities 
from basic connectivity or even local 
processing has accelerated a new 
view of the edge as a more active 
participant in the myriad services 
underlying an IoT application. Indeed, 
enhanced connectivity of increasingly 
sophisticated MCUs in terminal 

and edge IoT devices has created a 
growing need for local services able 
to support a broad array of “non-
functional” requirements including 
security, maintainability, and others 
required to ensure overall application 
health and quality of service. 

Often, these requirements involve 
methods applied at each of 
the multiple vertical layers and 
horizontal partitions that define an 
application. For example, hardware 
or software flaws in IoT devices 
can present security vulnerabilities, 
weak connectivity protocols in IoT 
networks can provide an avenue for 
attacks, and complex cloud-based 
software systems that carry any 
number of security threats. Worse, 
IoT applications present a particularly 
attractive target. Using any of the 
multiple threat surfaces inherent in a 
connected application, an attacker 
can reach through the IoT network 
to strike at valuable enterprises 
resources typically tied in at the upper 
levels of an IoT application. 

Like an IoT application itself, an 
effective solution to security and 
other non-functional requirements 
crosses multiple boundaries. For 
example, IoT security requires a 
multilayer approach. At the lowest 
level, IoT terminal and edge device 
security combine multiple low-
level security mechanisms such as 
hardware-accelerated cryptography 
with higher level methods for secure 
firmware updates and secure boot. 
Building on this hardware root of trust, 
higher level protocols and policies 
provide aspects of security such as 
authentication, access control, and 
rights management to ensure that 
only authorized devices and cloud 
resources participate appropriately 
in the IoT application as a whole. 
The effectiveness of a solution to 



| 9  

security and other non-functional 
requirements typically depends on its 
completeness: Each component is 
necessary for a robust solution, but 
none by itself is sufficient. To address 
this growing need for end-to-end 
mechanisms, methods, and policies, 
cloud providers have defined IoT 
platforms designed to better mediate 
the convergence of requirements of 
IoT device, middleware services, and 
application-level cloud services. 

The Smarter Edge

With the emergence of IoT platforms, 
edge devices found a new role 
that transformed edge devices 
from essentially an add-on within 
the IoT hierarchy to a first-class 
member. Rather than provide limited 
processing for control-loops, device 
management, and data conditioning, 
smarter edge devices have become 
a central player in the sophisticated 
service-oriented IoT platforms offered 
by cloud-service providers. Here, 
edge devices have taken on some 
of the capabilities of each side of 
the interface between IoT devices 
and cloud resources, serving as a 
proxy for those capabilities to the 
other side. For terminal IoT devices, 
edge systems host a growing 
complement of local IoT platform 
services previously available only 
from the cloud itself. For the cloud, 
edge systems provided the cloud 
with access to virtual IoT devices 
containing configuration, state, and 
data that shadow the actual devices 
themselves. 

In a sense, this new view of the IoT 
edge takes the motivation for local 
processing to its natural conclusion. 
IoT architects recognized that 
just as the inherent delay in cloud 
connections erodes response latency 
for time-critical control loops, sole 

reliance on cloud resources for 
device management was a losing 
proposition. Beyond its role in leveling 
data streams and reducing service 
complexity, a smarter edge device 
that acts as a proxy to both devices 
and cloud applications enables 
each to continue functioning despite 
failures on either side or even if 
the connection between the two 
becomes intermittent or lost entirely. 
If one or more terminal IoT device 
goes down for any reason, the edge 
system provides its shadow to the 
cloud application; if cloud resources 
become available, the edge system 
provides the equivalent cloud services 
most critical to IoT device operation. 
In each case, this proxy role goes 
well beyond that of a simple cache 
or lookup table. The edge device 
serves as an integral part of the IoT 
application as a whole. 

This expanded view of the edge 
continues to evolve rapidly in 
response to the emergence of new 
methods designed to address 
growing demand for more powerful 
IoT capabilities. For example, the 

startling advances in machine-
learning methods have allowed 
developers to respond to demand 
faster recognition of patterns of 
interest buried in all manner of data 
sources. Just as edge devices 
reduced response latency in control 
loops, they are speeding delivery of 
more complex information by moving 
inference engines from the cloud and 
closer to data sources. 

The ability to execute machine-
learning inference models and other 
sophisticated analytics algorithms 
at the edge allow IoT application 
developers to change the nature 
of what flows to the cloud. Rather 
than delivering data streams alone, 
smarter edge devices let developers 
deliver analytics and inference results 
without compromising their ability 
to deliver data just when and where 
needed. In this way, edge devices 
transform the mechanics of data and 
information flow in IoT applications, 
enabling developers to elevate their 
functionality and more efficiently knit 
diverse information sources into more 
effective enterprise solutions.



10 |

The Internet of Things (IoT) is 
first and foremost about data but 
transforming that data into useful 
information is no easy task. Rather 
than idealized founts of perfectly 
formed data, IoT data pipelines 
can sometimes be chaotic, always 
changing sources that challenge 
each stage of their transformation 
to information. Along with demands 
tied to high volume, velocity, and 
variety familiar to any “big data” 
application, IoT data complicates the 
path to information generation with 
additional characteristics including 
variance, vulnerability, and veracity 
(Figure 1).

On their own, high-level approaches 
operating solely at the apex of the IoT 
hierarchy can find that dealing with 
these characteristics on their own is 
impractical—sometimes impossible. 
An increasingly important piece of 
the solution to these challenges lies 
in the evolution of a smarter edge 
that is able to decouple the details 
of data generation in the periphery, 
that is, from the abstractions that are 
essential to the high-level software 
and hardware, which ultimately 
generate useful information in large-
scale IoT applications. 

Volume

Enterprise IoT applications can 
involve IoT networks comprising 
hundreds of thousands of peripheral 
devices ceaselessly pushing data 
to data-hungry analytics and 
machine-learning algorithms. From 
a straightforward logistical point of 
view, the scale of these networks 
is enough of a concern. However, 
the number of IoT devices by itself 
tells only part of the story. The 
combination of advanced sensor 
technology and highly integrated 
MCUs enables developers to use a 
single IoT device to generate multiple 
streams of data. The availability 
of sensor fusion libraries allows 
developers to generate data beyond 
the raw data streams from sensors 
such as accelerometers, gyroscopes, 
magnetometers, and more. MCUs 
loaded with sensor-fusion firmware 
can form virtual sensors such as 
inertial measurement units that 
provide additional streams derived 
from that physical-sensor data. 

While vast numbers of environmental 
and virtual sensors gradually 
raise the tide of data reaching IoT 
applications, growing interest in 
streaming video and audio data 
opens the floodgates. The rapid 
acceptance of highly accurate 

machine-learning algorithms means 
that deployments are no longer 
limited by the number of human eyes 
and ears available to observe these 
streams. Now developers can feed 
these algorithms with high-resolution 
data from low-cost image sensors 
and microelectromechanical system 
(MEMS) microphones to an extent 
that would have been impractical few 
years ago. 

To sustain this volume of data, 
developers need to ensure that the 
underlying smart sensor systems 
operate at peak efficiency without 
further burdening the upper layers 
of an IoT application. Meeting this 
broad objective increasingly drives 
the need for smarter edge devices 
able to provide lifecycle support to 
a growing pool of sensors including 
commissioning new devices, 
securely updating their firmware, and 
retiring them when necessary. 

Even without the additional 
administrative load associated with 
IoT sensors, the amount of data 
can be counterproductive for large-
scale IoT applications. Not every 
application needs the full weight of 
data that an IoT network’s sensors 
can provide. With a smarter edge 
device, developers can lower the 
volume of data traveling upstream 

Making the Case for the Smarter Edge: 
The Six Vs of IoT Data 

Developers face high data volumes, velocities, and variety found in “big 
data,” along with the subtleties of data variances, vulnerabilities, and veracity. 
In response, there will be a greater dependence on a smarter edge to 
meld the IoT hierarchy into an effective end-to-end solutions platform. 

by Stephen Evanczuk for Mouser Electronics



| 11  

by running local inference engines 
or using data reduction methods to 
transform raw data to the resolution 
or update rate required by the cloud-
based application. 

The local data transformation 
methods enabled by a smarter edge 
might not be optional to support 
essential high-level policies for 
security and privacy. For example, 
any application that touches personal 
identifiable information (PIL) will likely 

find a growing degree of difficulty as 
users exercise their right to privacy. 
Privacy experts use data minimization 
methods to filter out PIL that is not 
specifically required by the application 
or permitted by the PIL owner. As 
amply demonstrated in news 
headlines about security breaches, 
however, any data minimization 
performed in the public cloud leaves 
source data exposed as it traverses 
public networks and rests in a 
potentially vulnerable cloud storage. 

A smarter edge device provides a 
perfect compromise: Application 
developers can process data streams 
that contain permitted PIL in the 
edge device and push appropriately 
minimized results to the cloud. 

Velocity

Users’ insatiable desires for better 
information levy a broad set of 
requirements on IoT developers. 
Besides teasing out more data 

Figure 1: The six Vs of IoT data: 
Volume, Velocity, Variety, Variance, 
Vulnerability, and Veracity.

[ C O N T ’ D  O N  N E X T  P A G E ]



12 |



| 13  

from more sensors, developers find 
themselves chasing demand for more 
accurate results along a more finely 
sliced time base. As its part, the IoT 
application is expected to respond 
more quickly to data arriving at higher 
and higher rates, not only from high-
bandwidth streaming data sources 
but also from an expanding pool of 
smart sensors. 

The impact of this unrelenting increase 
in data velocity sends ripples across 
the entire IoT infrastructure. In a more 
conventional cloud-based application, 
developers would need to continue 
scaling out the cloud infrastructure, 
adding more expensive high-
throughput virtual server instances, 
input/output (I/O), and storage 
capacity. A smarter edge might not 
eliminate this demand for large-scale 
applications, but it could ease the 
need for those cloud resources to 
bear the unabated firehose of data 
arriving from the edge. Besides their 
ability to perform data reductions and 
minimizations locally, smarter edge 
devices can buffer peak-throughput 
demands, caching data locally on 
embedded solid-state drives. Also, 
developers can use these devices 
as smart load balancers, providing 
an application-oriented capability 
that is difficult to achieve purely with 
conventional-network load balancers 
typically placed on the public network 
side of cloud servers. 

As with security and privacy, however, 
the changing nature of IoT data 
can directly impact fundamental 
requirements. In striving to respond 
quickly to the data input, the normal 
data flow through the IoT-application 
hierarchy may not be fast enough, 
and higher velocity data compounds 
the difficulty. Just as the smarter 
edge can be used to cull sensitive 
information from data streams, it can 

also allow developers to short-circuit 
the normal data flow. Rather than 
sending sensor data to the cloud for 
processing, developers can use the 
edge’s local processing capability to 
meet requirements for low-latency 
response in closed-loop process-
control environments. In this role, 
the smarter edge is fundamental to 
the success of Industrial IoT (IIoT) 
applications and enterprise-level 
manufacturing-execution systems. 

Variety

The notion of a fast-growing pool of 
sensors naturally invokes images of a 
massive data firehose pumping more 
bits to the cloud, but IoT data streams 
are stunningly heterogeneous. The 
motivation behind the broad vision of 
the IoT would hardly find achievement 
in an application that continuously 
saw the same data regardless of its 
volume and velocity. If variety is the 
spice of life, it is the lifeblood of the 
IoT. 

Although data variety gives rise to 
many of the same requirements 
mentioned earlier, it can impose a 
significant strain on the ability of an 
IoT application to respond to the 
varied needs of its different sensors 
and their operating modalities. Smart 
sensors have relieved some of the 
burdens developers faced in the past 
in working with sensors. For example, 
smart sensors typically provide self-
calibration features and integrate 
compensation tables or algorithms—
all capabilities that developers 
needed to perform implementations 
themselves in the past. Now, instead 
of setting bias levels, excitation 
currents, and other analog operating 
characteristics, developers work in 
the digital domain to programmatically 
set registers and configuration 
data in these sensors. For the 

microcontrollers (MCUs) paired with 
these sensors, a developer needs to 
provide more system-level capabilities 
and support for features like security 
updates to firmware and on-chip data, 
such as keys and certificates required 
for secure transactions. 

In large-scale IoT device deployments, 
the myriad details and demands 
of peripheral device management 
present a significant challenge to 
IoT developers as well as the IoT 
infrastructure. By co-locating the 
necessary complement of device-
oriented services for the application’s 
devices, a smarter edge not only 
reduces the load on cloud resources 
but also simplifies the overall IoT 
application architecture. For this 
reason, cloud service providers have 
created IoT-specific service platforms 
designed to help deal with this 
complex problem. Indeed, a major 
functional component of these IoT 
platforms resides on the edge. Here, 
a smarter edge system supports 
the detailed transactions required 
to configure, update, and operate 
terminal IoT devices, allowing the 
cloud-based application to participate 
in device management at a higher 
level of abstraction. 

Variance

The nature of IoT data becomes 
particularly interesting in its 
characteristics beyond the traditional 
big three of big data. In an IoT 
application, data variances emerge 
as an important refinement of data 
variety. While data variety is largely 
a static attribute of large-scale IoT 
deployments, variances in data from 
individual sensors is a dynamic quality 
that can reveal valuable information. 
Just as an IoT application fed with 
homogeneous data offers few, if 
any, real insights, an application 

[ C O N T ’ D  O N  N E X T  P A G E ]



14 |

working with invariant data even from 
heterogeneous data sources largely 
provides a static snapshot of its 
target. 

The ability to record such a snapshot 
at high fidelity and resolution might be 
enough in some cases. In applications 
as varied as consumer heart-rate 
monitors, process-control systems, 
or security management systems, 
steady-state data confirms the 
expected behavior. When the data 
departs from its steady-state values, 
the contingencies programmed 
into the application come into play, 
sometimes working to return to the 
steady-state values or sometimes 
simply watching for the next change. 

The difficulty lies in recognizing if the 
variance reflects some significant 
activity or if it lies within a range 
of acceptable variation in the 
environment, the monitored process, 
or in the sensor signal chains. The 
ability to recognize the difference 
is critical for application success. 
The users of an IoT application will 
eventually lose confidence in any 
system that constantly issues false 
positives. At the same time, false 
negatives could reduce the timeliness 
and urgency of an eventual response. 
For example, the presence of data 
outliers could be the first sign of 
hackers testing the boundaries of 
the IoT application. Failure to act on 
these anomalous variations could 
result in an escalated attack or quiet 
penetration of connected resources. 

Dealing with variances effectively 
requires both detection and 
interpretation—with functionality 
ideally placed as close to the data 
sources as possible. Using the local 
processing and storage capabilities 
in an advanced edge architecture, 

the edge-based software can 
track trends in data sensors and 
perform analysis with conventional 
analytics or machine-learning 
algorithms to determine if a variation 
in data crosses some threshold of 
significance. Although this kind of 
predictive “sensing” is only beginning 
to appear, its successful emergence 
in IoT applications critically depends 
on a smarter edge. 

Vulnerability

Any connected application faces 
multiple security threats, and an 
IoT application lies perhaps more 
exposed than any other. Like any 
other connected application, an IoT 
application is vulnerable through 
the connectivity backbone that 
provides the foundation for data 
transfers and analysis. Unlike 
most connected applications, an 
IoT application comprises widely 
diverse systems ranging from the 
real-time environments running in 
terminal IoT devices to the general-
purpose environments running in 
cloud and enterprise servers—or 
both environments running in edge 
devices. Add to this the volume and 
variety of peripheral IoT devices, and 
the result is an unparalleled collection 
of systems, each individually 
representing multiple points of 
penetration and in aggregate, 
presenting a porous gateway to 
hackers. 

If this vast set of weak points provides 
the opportunity for hackers, their 
motive will be the prize available 
through an IoT application. As part 
of the enterprise infrastructure, IoT 
applications can tie into corporate 
data-lake systems, storage, and 
computing systems—providing a 
pathway to a black-hat community 

that has already demonstrated that it 
has the means to penetrate all manner 
of connected systems. Often lacking 
the resources required to harden 
security sufficiently, peripheral IoT 
devices can present themselves as 
easy targets for hackers looking to 
tunnel their way past network security 
and into valuable enterprise resources. 
Smarter edge devices are essential 
not only for enhancing the security 
of resource-limited IoT devices. They 
are, more broadly, vital within the IoT 
application hierarchy for extending 
high-level security policies across 
lower layers of the hierarchy, which 
often lack comprehensive protection. 

In many ways, smarter edge systems 
provide a critical component in end-
to-end IoT security solutions. At 
this level of security mechanisms, 
these systems use their local device 
management capabilities to update 
device firmware, provide lifecycle 
support to device security credentials, 
support secure commissioning, 
and more. For resource-limited IoT 
devices that are simply unable to 
apply security methods promptly, 
smart edge systems can identify 
sensor readings from these devices 
as untrusted but perhaps otherwise 
useable. Alternatively, smart edge 
systems can leverage their ability to 
support multiple connectivity options 
to reach these devices through short-
range, non-Internet Protocol (IP) links, 
eliminating a direct pathway from the 
device to the network backbone and 
enterprise resources. 

Beyond their support of low-level 
security methods, smarter edge 
systems can offer enterprise-level 
security policies for authorization, 
access, and privileges to the local 
level. As with device management 
services, these higher-level security 

[ C O N T ’ D  O N  N E X T  P A G E ]



| 15  



16 |

measures are an important feature of 
the IoT platform provided by major 
cloud-service providers. By hosting 
these cloud-related services at the 
local level, smarter edge systems can 
extend the policies of those cloud 
environments to the very periphery of 
IoT networks. 

Veracity

The final characteristic included in this 
article is the most elusive of all, but 
it ultimately determines whether the 
users of an IoT application accept its 
results. In this sense, it is perhaps the 
keystone in the bridge between data 
and knowledge. In its most abstract 
interpretation, veracity describes the 
extent to which an IoT application 
provides a faithful representation of its 
target—whether that representation 
is a transformation of data through 
multiple analysis and inference 
engines or if it is simply a desired 
collection of data measurements. 
In more actionable terms, data 
veracity relates to the ability to 
validate the operation of each stage of 
the IoT flow from sensor signal input 
to knowledge generation. It addresses 
the following questions: 

•	 Are wireless sensor devices 
operating correctly or introducing 
high-frequency radio signal 
artifacts in the data? 

•	 Is the connectivity backbone 
transferring every packet in 
sequence or is the high volume or 
velocity of data eroding its quality 
of service due to congestion, 
delay, or even suboptimal protocol 
settings? 

•	 Have hackers compromised 
devices or poisoned data streams 
with corrupt data? 

•	 Are increased requirements 
overloading the edge and 

impacting the connectivity, local 
processing, or IoT platform 
services? 

•	 Are machine-learning models 
correctly trained, or is overfitting 
causing their recall rate to plummet 
even with acceptable data 
variances? 

Data veracity and its flip side, the 
application confidence level, are 
of course the objectives of every 
application development team. 
Because of their sheer complexity, 
IoT applications defy simple attempts 
to precisely quantify each of the 
myriad of requirements necessary to 
satisfy those abstract objectives. IoT 
application developers are more likely 
to fall short if they fail to account for 
the more evident challenges related 
to IoT data volume, velocity, variety, 
variance, and vulnerability. With 
the critical role that smarter edge 
systems play in meeting each of these 
challenges, the evolving capabilities 
of these systems provide developers 
with a vital resource for enhancing the 
veracity of IoT data flows and instill in 
a user a confidence in the data flow 
outcomes. 



| 17  

8th Generation 
Core™ Processors

XBee Cellular 
LTE-M Embedded 
Modem

SmartMesh® IP™ Wireless Solutions

PAN9026 Wi-Fi and Bluetooth® Radio Modules

mouser.com/intel-8th-gen-core-processors

mouser.com/digi-xbee-cellular-lte-m

mouser.com/adi-smartmesh-ip-wireless-solutions

mouser.com/panasonic-pan9026-wifi-bt-modules



18 |

Artificial intelligence (AI) methods 
have advanced with startling speed 
from a research topic to become a 
primary focus of the semiconductor 
industry. Already at work in 
smartphones and rapidly emerging in 
home devices, AI machine-learning 
techniques have rapidly gained 
attention for their ability to deliver 
accurate results using statistical 
methods. While a global race for AI 
chip dominance is only beginning, 
the use and availability of AI 
hardware accelerators at the edge of 
the IoT promises to leverage streams 
of data in providing application 
features that simply cannot be 
developed with conventional 
methods. For developers, the 
challenge lies in engaging these 
techniques with available hardware 
solutions and anticipating emerging 
AI-based architectures. 

Rather than creating code to find 
events of interest, development 
teams can achieve remarkably 
accurate results using supervised 
learning methods to train models to 
identify specific patterns or using 
unsupervised learning methods to 
discover patterns buried in data 
streams. In particular, the use of 
inference models—that is, trained 
neural networks—has achieved 
spectacular results in classifying 

data. This combination of data-
driven, “code-free” development and 
high accuracy of pattern recognition 
holds great promise for providing 
the “killer app” for the IoT, where vast 
streams of data might otherwise go 
largely untapped by overwhelmed 
software developers. 

To fully realize machine-learning’s 
potential in the IoT, however, 
machine-learning algorithms need 
to move out of the cloud to operate 
as close as possible to their data 
sources. The placement of machine-
learning algorithms in the IoT 
hierarchy is critical. Too far out on 
the periphery, sensor data streams 
may be too few or too feeble to 
warrant use of a machine-learning 
model. In their role as mediators 
between peripheral IoT devices and 
the cloud, edge devices receive the 
mass inputs of multiple sensors. 
Furthermore, their emerging role in 
bringing cloud services closer to 
peripheral devices makes them an 
easy choice for migrating machine-
learning models from the cloud. 

Smaller Inference 
Models

Although cloud-based machine 
learning can take advantage of 

scalable computing resources, such 
as graphics processing units (GPUs), 
edge devices offer more modest 
resources. Even so, developers can 
already deploy machine learning 
on advanced edge systems by 
taking advantage of compression 
techniques that enable inference 
models to run effectively on general-
purpose processors, particularly 
those with specialized extensions. 

Since their dramatic demonstration 
of highly accurate image recognition 
earlier this decade, deep neural 
network (DNN) architectures, 
particularly convolutional neural 
network (CNN) architectures, 
have grown in memory size and 
computational complexity. While 
the CNN architecture that achieved 
breakthrough performance in 
2012 required only eight layers, 
subsequent models quickly jumped 
in size, using dozens or even 
hundreds of layers to improve 
accuracy on the benchmark 
ImageNet data set. Large models 
can be hundreds of megabytes 
in size and require massive 
computational power not only for 
training but inference as well. Deeper 
models also mean longer inference 
latencies as dataflows through more 
layers of the neural network. By 

AI at the Edge Requires Balance of 
Capable, Flexible Hardware 

As the IoT expands, we are finding new ways to use emerging artificial 
intelligence (AI). But, AI hardware must offer balance and flexibility to address 
the multifaceted challenges found at the edge and open the doors for AI 
processing, to create the next great innovations in IoT applications. 

by Stephen Evanczuk for Mouser Electronics

[ C O N T ’ D  O N  P A G E  2 0 ]



| 19  



20 |

sacrificing computational resources, 
model researchers could achieve truly 
impressive accuracy. 

To perform an inference on more 
modest platforms, such as edge 
systems, AI researchers found they 
could reduce the precision of the 
internal calculations, resulting in 
smaller models with minimal impact 
on accuracy. Researchers found that 
they could (to a certain extent) dial 
in the required model size using this 
reduced precision approach along 
with other techniques. Implemented 
in compressed CNN architectures, 
such as MobileNet and SqueezeNet, 
these inference models can deliver 
respectable levels of accuracy even 
with minimal resources available on 

mobile devices and general-purpose 
platforms. 

Still, these models are not the right 
solution for all applications. Users will 
not tolerate a “respectable” level of 
accuracy for many applications, and 
CNNs will not be the best algorithm 
for every application. CNNs are only 
one of many types of DNNs, and 
DNNs are only one approach among 
many algorithms that might be more 
suited to a specific problem domain. 
Techniques such as decision trees 
and ensemble methods like random 
forest algorithms have proven 
particularly effective in solving many 
of the problems found in the IoT, but 
other IoT problems might be best 
approached using Bayesian inference, 

support-vector machines, gradient-
boosting trees, k-nearest neighbors, 
or other techniques among a vast set 
of emerging algorithms. The number 
of new algorithms and significant 
variations of existing algorithms is 
growing rapidly: Dozens of original 
research papers appear each day, 
offering new approaches to enhance 
accuracy, reduce complexity, and 
generalize their inference capabilities 
outside the original training data set. 
Few technologies have enjoyed the 
heady pace of advancement that 
machine learning has, and therein 
lies one of the significant challenges 
in building AI processing into edge 
hardware using AI devices. 



| 21  

AI Hardware 
Challenges

Advances in algorithms will continue 
to alter the balance between accuracy 
and resource requirements, and 
practical implementations will 
constantly seek to resolve the conflict 
between these two key characteristics 
in all AI-based solutions. With CNNs, 
for example, algorithm researchers 
significantly increased accuracy by 
sacrificing memory and processing 
resources—both already in relatively 
short supply in cost-effective edge 
designs. Furthermore, to meet real-
time performance requirements 
typically found in IoT applications, 
the inference latency also becomes 
critical as does throughput for high-
volume data streams such as video 
streaming. Also, for an inference 
engine to run within the relatively 
restricted environment of an IoT 
edge system, power consumption 
also emerges as a critical metric, 
so developers need models that 
minimize memory access cycles 
and processing loads. Finally, the 
development and deployment of 
an AI solution needs to work easily 
with existing (or at least compatible) 
workflows and enjoy an ecosystem 
capable of supporting life cycle 
requirements. Of course, all of this 
must contend with the unsettled 
nature of AI algorithms and the 
continued evolution of development 
environments able to support 
advances in machine-learning 
frameworks, high-level AI libraries, 
and lower level hardware-supported 
math libraries. 

Useful AI hardware must successfully 
navigate this changing sea of 
requirements and capabilities, but 
available solutions necessitate 
significant compromises in some 
areas to reach useful levels in others. 

For example, general-purpose 
processors offer maximum flexibility 
while sacrificing the performance of 
inference models. Advanced general-
purpose processors somewhat 
balance that trade-off, using single-
instruction multiple data (SIMD) 
instruction sets to provide the 
degree of parallelism necessary in a 
machine-learning algorithm execution. 
Developers can find available 
SIMD processors that provide 
hardware support for neural-network 
functions in libraries designed to 
support inference models on these 
processors. For example, Intel’s 
Xeon Scalable processor architecture 
helps accelerate operations in 
the Intel Math Kernel Library for 
Deep Neural Networks (Intel MKL-
DNN). Similarly, SIMD features an 
Arm® Cortex®-A series and some 
members of the Cortex-M family’s 
speed neural-network functions in 
the Arm CMSIS-NN—the neural 
network extension to the Arm Cortex 
Microcontroller Software Interface 
Standard (CMSIS) library. 

The ability to accelerate machine 
learning directly relates to the 
hardware’s ability to support the 
general matrix multiply (GEMM) 
operation, which is the predominant 
calculation in neural networks and 
other machine-learning algorithms. 
With their dedicated parallel execution 
hardware, GPUs excel at this type of 
operation but exhibit very large levels 
of power consumption. 

Balancing 
Requirements

Beyond these devices, an emphasis 
on parallelism is reflected in each 
existing and emerging approach for 
building AI processing into edge 
hardware. Among existing solutions, 
advanced field-programmable 

gate arrays (FPGAs) provide one 
of the most effective solutions for 
implementing inference engines. 
Advanced FPGAs feature embedded 
memory and digital signal processing 
(DSP) slices, which together 
provide the essential ingredients 
of hardware-accelerated machine 
learning. Developers can use the 
FPGA fabric to implement resource 
schedulers and control logic. In turn, 
this control subsystem will optimize 
the execution of matrix calculations, 
using a combination of DSP slices for 
parallel calculations and embedded 
memory to efficiently access model 
parameters and store intermediate 
results. 

For years, designers have exploited 
the flexibility and performance of 
FPGAs to accelerate compute-
intensive algorithms not yet 
implemented in dedicated hardware. 
These same characteristics, along 
with their high-performance/watt 
capabilities, make FPGAs particularly 
well suited for implementing inference 
engines in edge systems. Indeed, 
machine-learning experts have 
focused on FPGAs as inference 
platforms in both research and 
emerging production environments. 

Currently, significant effort focuses on 
deploying the FPGA-based inference 
in data centers, but the results of 
this effort are opening up a growing 
set of FPGA tools applicable to edge 
deployments. Today, developers 
can find support for their machine-
learning developments in libraries, like 
the Intel Deep Learning Accelerator 
Library for FPGAs, the Lattice 
Semiconductor sensAI framework, 
and the Xilinx ML Suite, which are 
supported by FPGA device vendors. 
In each case, the libraries and related 
development tools provide the glue 
required to use the vendors’ FPGA 

[ C O N T ’ D  O N  N E X T  P A G E ]



22 |

devices as the hardware platform for 
running inference models developed 
on industry-standard frameworks 
such as TensorFlow, Caffe, and 
others. As part of their development 
workflow, these optimization tools 
in each environment let developers 
tune performance processes, perform 
quantization, prune trees, and 
employ other reduction methods 
such as merging separate model 
functions. Lattice Semiconductor 
provides specialized Internet 
Protocols (IPs) designed to accelerate 
an implementation of CNNs and 
binarized neural networks (BNNs)—a 
variation of CNNs that reduces 
model parameters to binary values 
with minimal impact on accuracy. In 
many ways, the pairing of FPGAs 
and advanced architectures like 
BNNs represents the core advantage 
of FPGAs, which offers developers 
the flexibility to pursue very new 
approaches with minimal risks. 
The downside is a more involved 
development process: Programming 
an FPGA is not as simple as writing 
code for a SIMD processor. 

The variations of DNN architectures, 
such as BNNs, reflect a trend that will 
continue to play out as the industry 
works to perfect machine-learning 
deployments. Besides reducing 
memory requirements, BNNs simplify 
the math. Rather than needing to 
execute a computationally expensive 
GEMM operation, the hardware 
platform only needs to perform 
bitwise XNOR operations, which are 
all operations that execute rapidly on 
FPGA platforms, typically along with 
bit shifts. 

Hardware 
Optimization

As AI researchers dive deeper into the 
details of algorithm implementations 

on hardware, they will find similar 
opportunities to tweak algorithms 
to improve a match to hardware. 
Conversely, this deeper understand-
ing can also offer insights into hard-
ware optimizations such as Intel’s 
Flexpoint, which plays a central role 
in its Nervana™ Neural Network 
Processor (NNP). In studying what AI 
researchers call the “unreasonable 
effectiveness” of reduction techniques 
for inference models, Nervana engi-
neers noticed that parameters of a 
specific matrix, or more correctly a 
tensor, stayed within a given dynamic 
range during training. Because a 
Nervana NNP’s training fails when 
applying the kind of quantization used 
in reduced CNNs (and much fewer 
BNNs), employing Flexpoint is the 
most effective way for the Nervana 
processor to perform tensor opera-
tions as fixed-point operations rather 
than computationally expensive float-
ing-point operations. Using an algo-
rithm called Autoflex to manage these 
shared exponents in a tensor, training 
can proceed with fixed-point-like per-
formance while retaining floating-point 
precision, opening the door to the 
highly valued prize of performing 
model training as well as inference in 
the field. 

Optimizations on the algorithm side 
like BNN’s bitwise calculations and 
on the hardware side like Nervana’s 
Flexpoint will likely continue 
regardless of what happens in the 
imminent appearance of specialized 
AI chips. For these devices, engineers 
are combining techniques learned in 
massively distributed systems design 
with those learned in microsystems 
design and semiconductor design. 
Along with algorithm advances, this 
confluence of multidisciplinary design 
methods will begin to deliver chips 
that more successfully support the 
requirements of accuracy, resource 

utilization, power, flexibility, and 
integration—both individually and in 
toto. 

This next stage of hardware support 
for AI is just beginning, but certain 
architectural principles are already 
emerging. Among these principles 
are evolving techniques for 
memory optimization and massive 
parallelism, which is not surprising. 
Using approaches remotely similar 
to processor cache hierarchies, 
advanced AI architectures are 
reducing both the number and 
duration of memory cycles by 
employing integration processing 
resources with wider, deeper memory 
hierarchies. For example, IBM 
researchers have described an AI chip 
that, among other features, includes 

“scratch pad” memory to reduce the 
need to access memory for model 
parameters and intermediate results. 
For its intelligence processing unit 
(IPU), Graphcore uses a new twist to a 
decades-old, system-level distributed 
memory approach, called bulk 
synchronous parallel (BSP) computing, 
to optimize model processing. 

Of course, the success of machine 
learning finds its origins in GPUs, 
and the success of GPUs rests on 
their massive hardware parallelism. 
AI chips will build on these lessons 
learned in GPU architectures that 
exploit parallelism and in algorithm 
designs that optimize the replicated 
execution engines. For example, the 
latest version of Nvidia’s Tensor core 
supports lower resolution integer 
values, keeping pace with advances 
in model optimization methods. 

The performance of AI chips rests 
on the ability to replicate processing 
cores like Nvidia’s Tensor in very 
large numbers—that is, without 
succumbing to performance 



| 23  

degradation issues related to 
route ability, path timing, and 
interconnection planning in physical 
chip design. The combination of 
silicon design tools and AI IPs from 
Cadence, Synopsys, Imagination 
Technologies, and other IP vendors 
offers an effective base for highly 
differentiated AI devices. In fact, 
with its Deep Learning Accelerator 
(NVDLA) IP, Nvidia has entered the 
AI core arena with an open source, 
modular architecture designed to 
accelerate an inference and that 
even features a small-model design 
specifically intended for the IoT. 

Conclusion: 
Flexible Solutions

The ability to support parallel 
matrix operations lies at the heart 
of emerging AI chips, but a third 
principle addresses both the reality 
of fast-changing algorithms and 
the need for product differentiation. 
Companies depend on their 
development prowess to differentiate 
products, largely through a code base 
with differentiated features that are 
built according to the company’s core 
competencies. In providing a “code-
free” approach, “standard” machine-
learning architectures, such as CNNs, 
ostensibly deliver non-differentiated 
solutions. In reality, machine-learning 
developers aggressively modify 
standard model architectures, adding 
new layers to the pre-trained models 
used for transfer learning or for 
embedding complete models as pre- 
or post-processors, particularly in 
feature extractions or classifications in 
novel architectures. A specialized AI 
device tied to a particular architecture 
would complicate this practice, much 
less the overarching goals of product 
differentiation. 

Recognizing both this need and the 
changing nature of algorithms, AI chip 
designers are offering two types of 
engines: Replicated “fixed-function” 
engines that are optimized for matrix 
operations, which are necessary for 
any machine-learning algorithm, and 
replicated programmable engines, 
which are designed to deliver the 
flexibility essential to accommodate 
algorithm advances and differentiated 
solutions. Arm’s ML processor 
architecture illustrates this trend. A 
component of Arm’s AI-focused 
Project Trillium, the ML processor 
architecture integrates multiple fixed-
function, matrix-execution engines 
with multiple programmable engines. 
Dedicated static random access 
memory (SRAM) addresses the need 
for shorter memory-access paths to 
help accelerate an inference in each 
engine instance. 

AI chips built with the Arm 
ML processor core and other 

architectures will begin to address 
the combination of challenges 
associated with an inference at the 
edge. Even these devices are only 
the beginning, focusing largely on 
proven CNN algorithms for proven 
markets such as those of automotive 
driver assistance systems (ADASs), 
surveillance, and the emerging class 
of applications built on low-cost, 
high-resolution image sensors. Even 
so, these AI chip combinations of 
programmability and AI acceleration 
makes them a compelling platform for 
building AI processing into the more 
sophisticated edge systems in IoT 
applications. 



24 |

Figure 1: Artificial intelligence (AI) increases 
find utilization in a wide variety of applications. 

(Source: Mouser)



| 25  

Technological breakthroughs in the 
area of semiconductor processors 
have enabled a host of artificial 
intelligence (AI) capabilities within 
the cloud computing domain. AI 
brings intelligence to devices to allow 
them to behave in more reliable or 
performative ways. Because it is in 
the electronic domain, theoretically 
AI is not bound by human biological 
limitations regarding capacity or 
response times. The cloud provides 
location and necessary processing 
power to handle large amounts of 
data and output innovative solutions 
that were previously unobtainable. 
Processors, accelerators, graphics 
processing units (GPUs), and 
field-programmable gate arrays 
(FPGAs) are semiconductor 

products that provide the necessary 
computational-processing power to 
the cloud (Figure 1).

For tomorrow’s applications, it is no 
longer sufficient to keep AI only in 
the cloud. The Internet of Things (IoT) 
requires that more and more of the 
processing work happens closer to 
the end nodes—the location of data 
(sensors) and actuation (control). 
The ability to collect data, store 
it, and then perform the analysis is 
providing a myriad of new ways to 
do business. The demand for low-
latency, real-time decision-making 
and response, which is imperceptible 
to humans (<0.05s), demands that 
AI processing moves from the cloud 
to a “smart” edge to transform our 

present business processes and 
products to those that the market 
wants tomorrow.

The edge exists in several contexts of 
which the IoT layer is one application. 
The edge is intermediate between 
the end-node device deployment 
and the top-level cloud-computing 
system. As an intermediate layer, it is 
now being provisioned with real-time 
AI capabilities, enabling applications 
that do not require computational 
power or cannot sustain the latency 
of cloud computing. The edge is 
becoming smart because more and 
more it is incorporating intelligence 
in the form of edge computing AI. 
Edge computing AI may experience 
use in various locations and stages 
between the cloud computing layer 
and the end nodes layer including 
the location of gateways, access 
points, and metro edges. 

Inferencing
at the Edge

Motion pictures provide the illusion 
of reality because multiple frames 
pass before the eye faster than the 
eye responds, creating the illusion of 
ongoing motion and no discontinuity. 
IoT applications, particularly those 
directly interacting with humans, 
require the same kind of ongoing 
continuity to avoid wait periods. 
Humans want the devices that they 

AI Processing for IoT: Where Clouds 
Give Way to a Smart Edge

This article examines how AI processing capabilities are moving from the cloud 
into the smart edge and are providing game-changing, intelligent ways to enable 
tomorrow’s IoT.

by Paul Golata, Mouser Electronics

[ C O N T ’ D  O N  N E X T  P A G E ]



26 |

electronically interface with to work 
with them in real-time.

To enable future IoT applications, 
including autonomous vehicles, real-
time decision-making is required. 
Data at the edge moves to the cloud, 
and what comes back is features 
or responses to that data. In that 
small moment of time, the decision 
of whether a particular object in front 
of a traveling vehicle is a blowing 
piece of litter, a ball, another vehicle, 
or a person may arrive back at the 
vehicle too late. Voice-enabled 
applications now found in many 
homes respond within the response 
time expected of a normal human 
conversation. Detecting errors and 
defects within the industrial contexts 
may help prevent accidents and 
hazard occurrences. These specific 
applications are only the tip of 

the iceberg among numerous IoT 
applications coming along in the 
future that will call for immediate, real-
time decision-making.

One method to make this happen 
is to enable inferencing at the 
smart edge layer instead of at the 
higher-level cloud computing layer. 
Inferencing means to draw or reach 
a conclusion based on the evidence 
by way of reasoning. AI at the cloud-
computing level can process large 
amounts of data over time and draw 
conclusions from the patterns it 
discerns. It is possible to conceive of 
ways of pushing these categorized 
conclusions down into the smart 
edge layer, so that upon initialization, 
the smart edge has a wide variety 
of highly intelligent categories from 
which to start its computational 
processes. The smart edge effectively 

provides a shortcut, greatly expanding 
the capability for the smart edge 
to decide something faster than a 
human’s biological response time. 
To enable this to happen, the smart 
edge must be able to process fresh 
data against these categories and 
quickly perform inferences towards 
a correct conclusion. Smart edge 
inferencing happens through machine 
learning, an application approach 
utilizing AI. Machine learning (ML) 
is a process or set of rules that 
occur through calculations or other 
problem-solving operations to 
empower the extraction of structured 
categories and representations from 
received input data. Processors, 
accelerators, GPUs, and FPGAs at 
the smart edge can be programmed 
to employ algorithms that draw 
these inferences. The cloud layer 
supports ML by ensuring that the 

Figure 2: AI and ML depend on high-performance semiconductor processors. (Source: Mouser)



| 27  

smart edge always contains the most 
appropriate algorithms, based upon 
the computational power it exerts 
upon the vast raw data it studies 
and processes to gain experience. 
The cloud layer is the best layer 
level to train ML algorithms. The ML 
algorithm training from the cloud 
layer is the informational knowledge 
that passes on to the smart edge 
to employ. Trained ML algorithms 
at the smart edge enable the smart 
edge to process the real-time data it 
receives in a structured manner and 
to compare this data to data models: 
This process is a recent development 
called federated learning that is an 
alternative to centralized training.   

Training ML algorithms at the 
cloud layer requires the highest 
performance processors, such 
as GPUs. However, these higher 
performance processors may not 
necessarily be a requirement at 
the smart edge. The reason is that 
the highly intensive computational 
processes occur at the cloud layer 
before moving to the smart edge. The 
question that engineers must answer 
is what level of computational quality 
metrics are necessary for learning. 
Also, determining how quickly the 

model needs updates with new 
data provides input regarding where 
processors should reside.

This deductive methodology allows for 
the proper optimization of a necessary 
performance level relative to power 
efficiency for action at the edge: 
Thereby enabling a greater variety 
of intelligent applications to perform 
without the necessity of the most 
costly, power-consuming processing 
chips (Figure 2). 

One common example of an AI and 
ML performance at the smart edge 
of IoT is in image and video analysis. 
In this example, AI by way of ML 
processes a large amount of raw data 
and extracts usable data content to 
assist with future decision-making. 
When data arrives by way of new 
observations, an ML model processes 
this data to produce a classification or 
decision (Figure 3).

Processing Chip 
Architecture

The smart edge generates, handles, 
and utilizes large amounts of data. 
Due to this large amount of data, 
high-computing processors with 

excellent efficiency are desirable. 
Arm technologies enable the 
world’s most popular AI platform—
the smartphone—along with ML 
features like predictive text, speech 
recognition, and computational 
photography. Within Arm’s line of 
high-performance, 64-bit (with a 
full 32-bit compatibility), Armv8-A 
processors are several devices such 
as the multicore Arm® Cortex®-A53 
and Arm® Cortex®-A72. World 
leading semiconductor firms may 
employ these Arm cores coupled with 
vector-processing engines—in the 
form of a system on chip (SoC)—to 
support AI processing at the edge. 
An important aspect of SoCs is that 
they frequently integrate with things 
commonly found outside of the 
processor (such as accelerators for 
applications, busses, and interfaces, 
etc.). By this extended integration, 
SoCs provide flexibility and scalability, 
allowing designers to match their 
connected end node devices with 
the data, security, and performance 
characteristics that are essential to 
their IoT systems and applications at 
the smart edge.

Processing chip architectures in the 
smart edge want to take advantage 

Figure 3: AI and ML in the smart edge 
can analyze videos and images to 
make decisions. (Source: Mouser)

[ C O N T ’ D  O N  N E X T  P A G E ]



28 |

of high, next-generation speeds 
(≥100Gbps) with excellent packet-
processing abilities. Standard- and 
open-programming models that 
employ software-aware architecture 
frameworks make it easier for 
designers to configure the product 
to match their specific network 
requirements. By providing a core-
agnostic architecture, designers can 
select the optimum core for their 
particular application. This concept 
takes advantage of the multicore 
trend and extends it by allowing 
an increased performance through 
the incorporation of either related 
cores or diversified cores. This smart 
edge computing generally contains 
provisions that support cybersecurity 
requirements that are inherent in 
IoT applications throughout their 
entire lifecycle. They also support 
virtualization—the abstraction of 
computing resources—permitting 
lower costs and complexities to 
prevail in designs: Virtualization 
achieves these benefits by treating 
computational and storage resources 
as separate entities, then redirecting 
and managing them for optimal 
utilization (Figure 4). 

Another processing chip architecture 
is the x86 complex instruction set 
computer (CISC) microprocessor. The 
x86 architecture has been around 
for about two decades. Similar in 
architecture to central processing 
units (CPUs) found in desktop 
computers, they incorporate a more 
advanced feature set to meet the 
requirements of workstations and 
networks, making them suitable 
for smart edge applications. They 
work in smart edge applications to 
provide computational processing 
power, enhanced connectivity, and 
storage on a high-speed product 
that does not compromise on 
keeping every piece of data secure. 

The x86 architecture allows for an 
intelligent workload placement, a 
low latency, scalability, and extreme 
responsiveness. These processors 
contribute to optimizing performance, 
providing analytics, and offering 
accelerated data compressions. 
These microprocessors come in 
several performance levels, with the 
highest level of performance being 
suitable for demanding smart edge 
applications including real-time 
analytics, AI, and ML. They perform 
well when provisioned to give real-
time AI-inferencing results at the 
smart edge. They come with up to 
28 CPU cores and can support up to 
12TB of address space.

Conclusion

The smart edge is emerging from the 
clouds. AI processing is enabling the 
smart edge to do a variety of tasks, 
which were previously relegated 
to the cloud computing layer. The 
demand for flexible, low-latency, 
real-time IoT solutions is part of 
the ongoing requirements that are 
now getting addressed at the smart 
edge. The ability to constantly adapt 
and provide data collections and 
analysis at the edge will allow AI and 
ML to provide better drive, business 
transformations, and performance. By 
managing information from a series 
of end node devices and applying ML 
algorithms on data business assets, 
IoT applications will be connected in a 
real-time, optimized way to decrease 
costs and increase value deliverables 
to the customer. The future of IoT 
includes soaring into the clouds only 
when necessary, for much of what we 
will accomplish will get performed at 
the smart edge.



| 29  

Figure 4: High-performance 
processors work with AI, 
electronics, and the IoT 
to enable the smart edge. 
(Source: Mouser)



30 |

As connected equipment, devices, 
and appliances proliferate, they 
are flooding networks with growing 
volumes of incompatible data. A 
house is a good example. Connected 
consumer devices like media centers 
and sound systems, climate control 
systems, household appliances, 
health monitors, interactive devices 
like Alexa, in addition to tablets, 
personal computers (PCs), smart 
phones, and cars are all pushing 
networks to their limits. These 
competing data streams can 
introduce latency into time-sensitive 
data, which degrades the user 
experience. The same thing can 
happen in an industrial setting where 
many more kinds of devices are 
competing for network bandwidth. In 
those situations, latency caused by 
data streams crowding each other 
out can disrupt a critical process. As 
connected devices become smarter, 
they generate more data, and this 
aggravates the problem.

Network service providers are 
beginning to use edge computing 
techniques specifically designed to 
optimize network performance under 
these conditions. Edge computing 
is a network architecture that places 
data processing capabilities as close 
to data sources as possible. When 
applied to network traffic, edge 
computing can optimize traffic to 

eliminate latencies and assure an 
optimum dataflow.

This article discusses some of the 
technical challenges presented 
when different types of data share 
the same network bandwidth, and 
how edge computing can improve 
network performance.

Examples of Edge 
Computing in 
Different Wireless-
Connectivity 
Scenarios

In many application scenarios, edge 
computing is an appropriate tool to 
achieve good network connectivity. 
Here are three examples:

Local Video Streaming 
Distributaries

Under certain demand situations, 
large-scale local video streaming 
is inevitable. Such services contain 
wireless, high-definition (HD) video 
cameras; local multistream video 
pushing; and real-time multiangle 
viewing. In this scenario, wireless 
connectivity is a challenge. 

Edge computing can add high-
definition and low-latency video 
streaming, helping users choose 

and helping businesses deliver a 
new multichannel experience. More 
importantly, edge computing can 
improve network efficiency and 
reduce network backhaul pressure. 
While providing multichannel, 
full-angle, and HD video, edge 
computing reduces the live 
broadcast delay. Edge computing 
can also help deliver a wonderful 
video experience to audiences, even 
in the face of fast-changing scenes.

Virtual Private Networks for 
Enterprises

In an enterprise virtual private 
network, the base stations are 
directly diverted to the intranets 
within the enterprise. By integrating 
the intra-enterprise communication 
platform, edge computing can 
meet the requirements of network 
security, low latency, and big traffic. 
Based on these characteristics, this 
kind of network attracts enterprise 
customers. Also, it can combine the 
Internet of Things (IoT) to do target 
tracking and video surveillance. 

All confidential data within the 
enterprise can bypass the public 
network, which enables the 
enterprise to carry out video 
conferencing, online learning, 
and other large-scale, real-time 
applications. At the same time, 

Could the Edge End the 
Connectivity Wars?

Connectivity wars stem from four common causes of data obstruction: Data 
differentiation from multiple devices, the data blocking phenomenon, the absence 
of isolation for data security, and reliability inconsistencies. This article examines 
how the edge can address these issues and end the connectivity wars.

by Bin Jiang, Chaofan Ma, Huifang Xu, and Houbing Song for Mouser Electronics

[ C O N T ’ D  O N  P A G E  3 2 ]



| 31  



32 |

the edge can make use of the 
mature, huge ecological chain of 
public networks; reduce the cost 
of related terminals; and integrate 
many enterprise applications through 
the open architecture application-
programming interface (API). These 
capabilities increase technical 
flexibilities available to the business.

Real-Time Throughput 
Identification for Each 
Terminal

For complex connectivity, throughput 
identification is another challenge. To 
enhance the user experience, mobile 
edge-computing can provide a real-
time throughput identification for each 
user’s connection: During this process, 
uplink data transmits through the user 
interface without additional signaling 
interaction, effectively improving the 
real-time connectivity of Internet 
content sources. In this way, it can 
enable the utilization and optimization 
of end-to-end network resources 
more effectively.

Edge computing can create new value 
chains and ecosystems by improving 
connectivity. In this way, it can enable 
the various roles of an entire industrial 
value chain to benefit from a better 
cooperation. Based on the same 
network-connection mode, the entire 
industry chain integrates telecom 
operators, equipment manufacturers, 
information technology (IT) vendors, 
and applications and content 
providers who manufacture chips and 
servers. 

Obstacles to Good 
Connectivity and 
Dataflow

To understand how edge computing 
can end the connectivity wars, it’s 
useful to understand four common 

causes of data obstruction in wireless 
connectivity:

Data Differentiation from 
Different Devices

Unstructured data formats vary 
among different devices, which 
challenges the unification of data 
interfaces. In general, distinct network 
systems have uniquely diverse 
communication protocols, thus 
hindering the connection, which 
is also an important reason for the 
wireless connection war. Insignificant 
differences in communication 
protocols between dissimilar devices 
can have a significant impact on 
the entire network, thereby making 
it impossible to connect smoothly. 
Network edge-processing can greatly 
improve this situation.

Data Blocking Phenomenon

With the continuous increase of data 
in the IoT, successful dataflow is 
another challenge. Data blocking will 
inevitably cause problems for wireless 
connectivity. At present, there are 
many kinds of smart devices with 
sensors connected to networks. The 
International Data Corporation’s 
(IDC’s) statistics show that more than 
50 billion terminals and devices will 
be networked worldwide by 2020. 
This kind of connected equipment 
generates enormous amounts of data 
that requires processing. According 
to IDC’s prediction, 40 percent of the 
data in 2020 will need to be analyzed, 
processed, and stored on the edge of 
the network.

Isolation for Data Security

Network security is a critical issue, 
and a key piece of this security issue 
is related to connectivity. This critical 
issue includes the incorporation of 

user password authentications, user 
access controls, and mode controls. 
Good connectivity helps to prevent 
computer viruses and encrypts core 
data to create a complete network-
connection environment. However, 
in many cases, the hidden danger 
of data security makes connectivity 
impossible, introducing connectivity 
conflicts between different devices 
and affecting how the entire IoT works.

Reliability of the Wireless 
Connectivity

The existing wireless connection 
technology used by consumer 
devices does not meet the 
performance requirements of 
industrial and healthcare systems. 
Different arrangements for security, 
accuracy, and time sensitivity of these 
systems increase the demand for 
reliability. The honeycomb system 
can almost meet these performance 
requirements, but it is often 
inappropriate regarding battery, cost, 
and data-transmission requirements. 
Edge computing can reduce the traffic 
of data transmissions in wireless 
connections and, consequently, save 
resources to improve the reliability of 
the wireless system.

Edge-computing techniques can 
go a long way towards resolving 
these dataflow obstacles in wireless 
networks. In the next section, we take 
a closer look at how edge computing 
can make a difference.

Using Edge 
Computing to End the 
Connectivity Wars

We have looked at application 
scenarios where edge computing 
can play a role in improving dataflow 
in wireless networks, but how 
specifically is this accomplished? 



| 33  

Let’s take a closer look at the 
technical strategies employed by 
edge-computing techniques:

Edge Computing Can Avoid 
Wireless Network Pipelining

Edge-computing platforms provide 
open API interfaces for partners to 
develop applications. These open 
interfaces allow partners to drive 
new business models by applying 
innovative incubation patterns, 
actively fostering application 
partnering ecosystems, and 
supporting the full application 
development life cycle. Innovation 
incubators provide partners with 
the framework they need to work 
efficiently so that newly developed 
applications can be incorporated 
into the application system quicker. 
An edge-computing platform avoids 
wireless-network pipelining, which 
reduces staged workloads. These 
reductions then free up network 
resources.

Edge Computing Can 
Improve Network Slicing 
Technology

In network slicing technology, uniform 
connectivity is very important. It splits 
the existing physical-network into 
several independent, logical networks, 
providing specific operations for 
differentiated services. For example, 
a software-defined network (SDN) 
can define an open interface 
between an operation and the data 
it interacts with, thereby revealing 
the functional changes within a set 
of network slices. However, practical 
commercial applications still face 
many challenges. 

Most current networks use the same 
access architecture, but application 
requirements usually necessitate an 

independent access mechanism and 
protocol stack for each application. 

One of the main technical 
characteristics of edge computing is 
low latency. To achieve low latency, 
mobile edge-computing must support 
a very demanding flow of data 
traffic. That makes mobile edge-
computing the key technology for 
ultra-low latency slicing. By applying 
edge computing, the purpose of 
network slicing technology will be 
extended from simply splitting out 
multiple, virtual end-to-end networks 
to splitting out virtual end-to-end 
networks with different high-delay 
requirements. The result of this is 
items requiring real-time processing 
that are coordinated separately 
and distinctly from those that do 
not require real-time processing. 
This distinction will assist in the 
development of an improved network 
slicing technology, leading directly to 
improved connection performances.

Edge Controller/User 
Separation Improves Wireless 
Network-Connection 
Compatibility 

Current networks are facing 
exponential growth in traffic demand, 
so the use of a broader spectrum has 
become a new method to expand 
network capacity. However, compared 
with the lower-frequency band, the 
high-frequency band is liable to suffer 
serious propagation losses. 

By separating the control layer from 
the user layer, a user gateway can 
synchronize independently in moving 
to the edge, thus naturally solving 
the related data-security problems 
during connectivity. Therefore, as 
one of the trends of fifth generation 
(5G) technologies, controller/user 
(C/U) separation is also the key 

edge-computing technology, which 
can provide a solution for network 
security. Specifically, edge devices 
take into account data collectors and 
owners respectively. For example, 
data collected by mobile phones will 
be stored and analyzed at service 
providers while preserving edge 
data and allowing users to own it. 
This will be a better way to protect 
data privacy. In this mode, the 
establishment of two discreet layers 
will allow for the full protection of user 
data within a specifically established, 
secure, and reliable network 
connection.

Edge Computing Meets Low 
Delay Requirements (As Is 
Expected with 5G) 

Under the requirements of “big 
data” and high connection densities, 
ensuring the presence of low latencies 
and low-power consumptions is also 
very important. For example, there 
is a business goal of achieving 1ms 
of end-to-end delay in a 5G network 
so that it can support the needs of 
industrial controls and other services. 
However, designers cannot optimize 
the current mobile technology enough 
to meet this goal. 

Long-Term Evolution (LTE) technology 
can improve the empty throughput 
by ten times but can only optimize 
the end-to-end delay by three 
times. The reason is that the network 
architecture is not fully optimized 
and thus is now the bottleneck of 
service delays though the empty port 
efficiency is experiencing a great level 
of improvement.

With the progress of mobile 
edge-computing, technical 
characteristics and industrial 
cooperation requirements are 
now functioning in many practical 

[ C O N T ’ D  O N  N E X T  P A G E ]



34 |

operations, greatly improving a 
user’s business experience. Edge 
computing now resides on the 
mobile edge, and wireless networks 
are integrating effectively. Because 
application services and content 
deployments are now on the mobile 
edge, their connection will be 
much easier. The result is that the 
forwarding and processing time of 
a data transmission will decrease. 
Additionally, end-to-end delays 
will decline, meeting the low delay 

requirements. All of this will be 
achieved while reducing required-
power-consumption needs.

Ultimately, local computing services 
on the edge of wireless networks will 
undoubtedly meet the challenges of 
integrating different services among 
vendors, IT solution providers, and 
developers within heterogeneous 
environments. Edge computing 
will make use of access to these 
wireless networks to provide services 

necessary for telecom users and 
cloud computing. In this way, it can 
create a high-performance, low-
latency, and high-bandwidth service 
environment, and consumers can 
enjoy a continuous, high-quality 
wireless-network experience.

Conclusion

Difficulties arise in handling digital 
data when any technical obstacle 
prevents a barrier. This article 

Edge Gateway 
3000 Series

CC3120 SimpleLink™ Wi-Fi Network
Processors and Modules

IoT Front-End Modules (FEM)

mouser.com/dell-edge-gateway-3000

mouser.com/ti-cc3120-simplelink-processor

mouser.com/skyworks-iot-front-end-modules



| 35  

discussed how the obstacles of 
different data types, clogged data 
pathways, the need to isolate data 
for the purposes of cybersecurity, 
and inconsistently reliable wireless 
connectivity all war against success. 

Unified data connections and 
aggregations are the basis for 
the development of wireless 
communications and the IoT. 
Facing diversified standards and 
heterogeneous technologies existing 
across industries, the data from 
different connectivity sources often 
cause data blocking. Additionally, 
different wireless-connectivity 
options, which many diverse 
devices use within the IoT and 
which aim to coexist in the same 

networks, inevitably create data 
conflicts. To avoid the pipelining 
of connectivity, it is very important 
to enhance connectivity through 
a deeper integration, especially in 
mobile networks. Integration and 
interoperability across vendors and 
domains are essential.

Edge computing effectively integrates 
wireless networks and Internet 
technologies, while also introducing 
computing, storage, processing, 
and other functions into a wireless 
network. It builds an open platform 
to implant applications and opens an 
information exchange between the 
wireless network and service servers 
through wireless APIs. For business 
level connectivity, edge computing 

can provide customized and 
differentiated services to industries, 
therein enhancing network utilization 
efficiency.

Science uses the language of math 
but the technical world largely 
defaults to English to articulately 
convey and communicate. There 
are many battles yet to enter the 
war to keep digital data flowing 
seamlessly and effectively. It is the 
obligation of engineers to ensure 
that the tremendous amount of 
digital data in transmission presently, 
and in the future, is not hindered. 
Edge computing is a significant 
development on the way forward that 
will help engineers win the day. 



36 |

Selecting Markets

The first step to a solid requirements 
base is understanding exactly what 
functions your Internet of Things 
(IoT) deployment is going to perform. 
Functionality can be broken down into 
a three-level taxonomy:

Understand which IoT vertical 
markets the system will serve (for 
example, smart factories, connected 
transportation systems, or smart 
cities/buildings/homes). 

Identify the specific use cases 
within those vertical markets. These 
can include areas like surveillance 
image-processing, building energy 
management, or rail safety. 

Focus on the use cases  that target 
the revenue-producing features of 
most interest. These can be things 
like detecting suspicious packages, 
optimizing elevator movement, or 
optimizing collision avoidance.

Requirements for Edge / Fog Systems

Selecting markets and determining requirements are 
the first steps in getting fog or edge enabled:

by Charles Byers for Mouser Electronics

Determining Requirements

Once the basic verticals, use cases, and 
applications are identified, the specific 
technical requirements to satisfy those areas 
can be defined. Examples could include:

•	 Capacity (user count, storage size, application load)
•	 Performance (latency, throughput, jitter)
•	 Reliability (availability, mean time to failure (MTTF), 

mean time to repair (MTTR), planned outages)
•	 Security (privacy, authentication, authorization, 

cryptoprocessing, key management)
•	 Bandwidth (internode link bandwidth, memory 

bandwidth, backhaul)
•	 Management (configuration, orchestration, 

monitoring, updates)
•	 Scalability (growing in the above dimensions, 

modularity)
•	 Interoperability (working with other suppliers’ 

hardware/software, standards compliance)
•	 Energy efficiency (average energy use, peak 

demand, sleep modes)
•	 Environmental (humidity, “Ingress Protection” 

rating (IPxx), temperature range, vibration)
•	 Cost (purchase cost, installation cost, ongoing 

operational costs, total lifecycle cost)

Once the basic requirements of an edge/fog system are well understood, the design or sourcing of its 
elements can begin. These requirements aren’t static but evolve over time as the vertical/use case/
application mix changes and as new technology becomes available.



| 37  

In many critical Internet of Things 
(IoT) network applications, relying 
solely on the cloud for computation, 
networking, and storage isn’t an 
adequate approach. Cloud-centric 
architectures may not fully meet 
capacity, performance, reliability, 
and security requirements (see 
the Requirements sidebar for 
more considerations). Instead, 
intermediate levels of computation, 
networking, and storage between 
the cloud and the sensors/actuators/
IoT are what is often necessary. 
Edge, fog, or mist computing are 
often what these levels are known 
as. This article focuses on designing 
and deploying advanced, distributed 
models for IoT computing, networks, 
and storage.

Understanding IoT 
Network Hierarchy

Figure 1 shows a hierarchical 
deployment of an IoT network. In 
many IoT applications, all levels of 
the hierarchy cooperate to provide 
critical services. Let’s look at the 
levels and their functions individually:

Cloud 

The cloud is usually the cheapest 
and most scalable place to provide 
computation, networking, and 

storage for IoT applications, which 
is evident by the servers, storage 
engines, and routers contained 
within it. Unfortunately, the cloud has 
drawbacks such as high latency, high 
backhaul-bandwidth costs, reduced 
reliability, and security issues. 

Fog 

Fog is a set of cloud-like resources, 
but “closer to the ground.” Fog is 
often arranged in layers, with more 
sophisticated functions higher in the 
hierarchy and lower latency functions 
lower. For example, higher layer 
fog nodes may reside in regional 
or neighborhood settings for smart 
cities and at the plant or assembly 
line level for smart factories. Lower 
layer fog nodes may be located at 
the street corner level, building level, 
manufacturing cell level, or individual 
machine level. Some fog nodes may 
be mobile, like those found in smart 
transportation systems.

Edge

Edge computing is usually the lowest 
layer of the hierarchy, right before 
the IoT’s “things.” The edge often 
includes gateway functions that a 
system uses to convert between 
the communications protocols that 
the “things” use and the formats 
that the “higher network” uses. Edge 

nodes may contain low-level control 
algorithms and modest storage 
arrays.

IoT Thing / Endpoint 

The lowest layer of the IoT hierarchy 
includes the “things”—that is, the 
sensors, actuators, displays, and 
intelligent endpoints the IoT network 
serves. Some of these devices are 
very cheap and dumb, while others 
have built-in intelligence, sometimes 
approaching that of a smartphone. 
They connect to other layers of the 
hierarchy (often through various 
wireless-link technologies) and 
rely on the edge, fog, and cloud 
to perform data analysis, provide 
storage functions, and run real-time 
control loops.

Configuring Modular 
Network Element 
Hardware and 
Software

Next, let’s explore some of the 
elements and design tradeoffs 
necessary during the design and 
installation of a fog/edge network. 
These tradeoffs span hardware and 
software, so let’s look at both:

Network Design: Intermediate Interface 
Nodes for Critical IoT Network Apps

For many critical IoT network applications, relying solely on the cloud for 
computation, networking, and storage isn’t an adequate approach. Instead, 
intermediate interface nodes that provide computation, networking, and storage 
between the cloud and the sensors/actuators/IoT are increasingly necessary.

by Charles Byers for Mouser Electronics

[ C O N T ’ D  O N  N E X T  P A G E ]



38 |

Figure 1: The hierarchical deployment of an IoT network provides different levels of functionality. (Source: Author)

Modular Hardware 

Figure 2 describes some of the 
modular hardware elements that can 
be valuable in fog/edge nodes. In 
lower level fog nodes or edge nodes 
(where power, mechanical size, or 
cost are very important), a subset 
of these elements may be soldered 
directly on a printed circuit board 
(PCB), with very little modularity or 
upgrade path. For higher level fog 
nodes, all the boxes on the figure may 
be field replaceable modules, using 
something like a stackable or blade/
backplane mechanical design to 
facilitate equipping the exact modules 
that complement an application’s 
needs and easily upgrading individual 

modules in the future. Here are 
some additional details about these 
modules:

Processors
Traditional Reduced Instruction 
Set Computer (RISC) and Complex 
Instruction Set Computer (CISC) 
central processing units (CPUs) 
including x86, Arm, and others are 
important components of edge/fog 
processing. They run algorithms that 
accept, process, and send sensor 
readings, either towards the cloud 
or back towards actuators that act 
based on those calculations. They 
typically run algorithms that are 
programmed with conventional 
software techniques and are often 

characterized by a need for high 
single thread performance.

Accelerators
Accelerators are specialized 
computational elements, designed to 
run certain workloads much faster or 
more efficiently than traditional CPUs. 
One example is a field-programmable 
gate array (FPGA), where gates are 
configured to provide custom data 
paths. Graphics processing units 
(GPUs) are another example, where 
the specialized, highly parallel 
processors designed for graphics 
rendering can be repurposed to 
perform IoT application functions. 
Finally, tensor processing units (TPUs) 
are an emerging class of accelerators 



| 39  [ C O N T ’ D  O N  N E X T  P A G E ]

designed to optimize the execution 
of artificial intelligence or machine 
learning functions. Accelerators often 
have a higher performance per dollar 
or per Watt than traditional CPUs, 
especially on computational problems 
that can run as many parallel threads.

Memory
Edge/fog nodes will require 
significant memory, both for storing 
sophisticated platform and application 
code and for providing intermediate 
storage for the torrents of data that 
many IoT applications will produce. 
The processors and accelerators 
will act on the data in this memory, 
filtering and compressing it before 
sending it to storage or up the edge/
fog/cloud hierarchy. Tens of gigabytes 

or more may be required at each 
processor.

Storage
Often, local storage is necessary on 
fog/edge nodes. This is typically an 
array of flash memory that is used 
to permanently store the large data 
structures used in IoT applications. 
There are tradeoffs in choosing the 
design of this storage, between 
rotating disks (which are cheap but 
may not be too reliable) and solid-
state storage (which may have write 
cycle limits, which may call for using 
single-level cell (SLC) or other high 
endurance technologies). Terabyte 
capacities will be a requirement on 
many nodes. 

Input / Output
Input/output (I/O) systems for edge 
and fog nodes are divided into two 
broad categories: Wired and wireless. 
In general, wired I/O is preferred 
wherever it is feasible, both because it 
usually has much better performance 
and reliability and also because 
spectrum is scarce and expensive if 
licensed. It is best to reserve wireless 
I/O for those applications where it is 
essential, such as to connect with 
mobile or portable IoT elements, for 
example. Wired I/O can be further 
divided into copper facilities (such as 
Ethernet, Power over Ethernet (PoE), 
Controller Area Network (CAN) bus, 
etc.) and fiber optical links. Wireless 
I/O is great for mobility and quick 
link configurations. Wireless I/O 

Figure 2: Modular hardware elements can be valuable in fog/edge nodes. (Source: Author)



40 |

can be divided into two categories: 
Licensed spectrum (3G/4G/5G 
cellular networks, satellite links, etc.) 
and unlicensed spectrum (Wi-Fi, 
Bluetooth, and LoRa). As shown on 
the figure, there may be different I/O 
interfaces for the northbound links, 
which accommodate higher level fog 
nodes and the cloud; southbound 
links, which accommodate the lower 
fog nodes, edge nodes, and things; 
and east-west links, for the peer-to-
peer communications among nodes.
 
Support Elements
Edge/fog nodes need several 
support elements to complete their 
design. The first one is a power 
system, which can accept either 
alternating current (AC) grid-energy 

sources or direct current (DC) sources 
(from batteries or renewables). The 
power system safely and reliably 
distributes energy to the remaining 
elements and can be redundant. 
There is also a management 
subsystem. It is responsible for the 
configuration, control, and monitoring 
of the elements. Finally, there are the 
mechanical elements of the backplane, 
card cage, chassis, and cooling 
system. Cooling is often a serious 
challenge, especially where high-
power processors and accelerators 
are used, if fans aren’t permitted, or if 
the node needs to be environmentally 
hardened (extended temperatures and 
IP65 or better levels of environmental 
capabilities are often required for 
outdoor or industrial nodes).

Modular Software

As shown in Figure 3, there are 
sophisticated software elements in 
edge/fog systems to complement the 
hardware shown in Figure 2. There 
are literally dozens of protocol-stack 
diagrams produced by organizations 
like the OpenFog Consortium, ETSI’s 
Multi-access Edge Computing, 
Industrial Internet Consortium, and 
others. This section will try to provide 
a generic view of the most essential 
software elements for edge/fog 
platforms and applications:

Hardware Abstraction
The hardware abstraction layer 
basically hides the details of the 
hardware from the software. If 

Figure 3: Sophisticated software complements the hardware in edge/fog systems. (Source: Author)



| 41  [ C O N T ’ D  O N  N E X T  P A G E ]

implemented correctly, the hardware 
abstraction layer will allow us to 
change elements of the hardware 
without requiring any modifications to 
the software. Similarly, the software 
can change without any impacts on 
the hardware. 

Software Backplane / Data 
Abstraction
It is necessary to provide a platform 
infrastructure to bind all the software 
modules together into a cohesive 
system. There are two models by 
which to do this: By the “software 
backplane” and “system data” 
models. The software backplane 
(rather like a hardware backplane) 
provides several “slots” with 
standard interfaces into which one 
plugs various modular software 
components. Software modules don’t 
have to interact seamlessly with all 
the other modules, they just have 
to connect through the software 
backplane that manages all the 
interfaces for the platform. Similarly, 
there is a system data model for 
the platform: It converts all the data 
representations, which are in use by 
all the platform applications, into a 
common system format; provides 
proper security; and makes the data 
available for all the modules.

Security Services
Security is perhaps the biggest 
challenge for edge/fog software. 
Two sets of security capabilities are 
shown in the figure. One is resident 
in the edge/fog node, and one is 
virtualized in the cloud that manages 
the security for the network. The 
node level security functions include 
key management, crypto-processing, 
authentication, privacy, and many 
other node-level security functions. 
The cloud-level security process is 
responsible for policy, identity, key 
generation, and many other network-
level security functions.

Management Services
Management is also an important 
challenge for IoT networks. The 
model has two sets of management 
capabilities. One is in the edge/fog 
node, and another is virtualized in 
the cloud. Node-level management 
performs functions including 
configuration, monitoring, fault 
tolerance, orchestration, load 
balancing, and a host of additional 
node-level management functions. 
The cloud-level management system 
performs network-level functions, 
like network orchestration, software 
updates, alarm reporting, and 
administrative accesses.

Protocol Services
The software platform includes 
services that are available for use 
by the rest of the software modules. 
One example is protocol stacks, 
supporting the communications 
between software modules in a 
node and also between nodes in the 
network.

Analytics Algorithms
An important function of edge/fog 
computing is distributed analytics. 
Some of the analytics algorithms may 
be supported as platform services for 
use by all modules. Examples include 
packet analysis, machine vision, radio 
frequency (RF) signal intelligence, 
etc. Also, artificial intelligence and 
machine learning algorithms will 
appear here.

Application Programming 
Interfaces
There is an application programming 
interface (API) between the edge/
fog platform software and the 
application software that rides upon 
it. This API allows the simple creation, 
deployment, and updates of the 
hardware and software modules 
below it as well as the applications’ 
programs above it. Ideally, this API 

should be standardized, but the 
standards community is still working 
to converge on a single API for this 
purpose.

Application Software
This is the reason all this software 
and hardware exists—to enable 
network applications that provide 
real business value. This software 
may be written by several different 
groups, including the supplier of the 
hardware or software platforms, data 
network operators, system integrators, 
node owners, end users, and various 
domain experts. Eventually, there will 
be an open marketplace for standard 
applications software that can run on 
any fog or edge node—similar to the 
iTunes® or Google Play™ marketplaces. 
Container models using technologies 
such as Docker or Kubernetes are 
often in use for the application’s code. 
Four instances of application software 
are shown on the figure, of which four 
different tenants can own on the same 
edge/fog processor. 

Putting It All Together

A concrete example should 
demonstrate how edge/fog systems 
fit together. Consider a multicamera, 
multisensor physical security system 
for monitoring an installation like 
an airport, casino, campus, or 
secure industrial facility. There are 
requirements for capacity (which 
include hundreds of cameras and 
sensors), performance (which is low 
latency), mission-critical reliability, and 
excellent security. 

Because of latency and bandwidth 
constraints, we can’t backhaul all 
the video streams to the cloud, so 
we must run analytics on a hierarchy 
of local fog/edge nodes. The video 
analytics and sensor fusion tasks can 
be split across levels of the network. 
For example, this split can occur with 



low-level edge nodes performing 
feature extraction and correlation 
tasks, while high-level fog nodes 
perform object recognition and threat 
assessment functions. Segregating 
functions in this way minimizes the 
network bandwidth and simplifies the 
correlation between sensor readings 
and images across multiple sensors. 

Likewise, the modular hardware 
of the edge/fog nodes ensures 
that an optimal mix of processors, 
accelerators, storage, and I/O 
interfaces are available on each 
network node. The platform software 
ensures that all nodes are secure, 
correctly managed, and include the 
essential platform functions. 

In general, the application software 
(also running on the local nodes) can 

be written by diverse sets of experts 
and can perform many smart building 
and surveillance-related functions. 
However, only the highest layer of 
reporting and policy management 
can touch the cloud. This is a very 
versatile and efficient deployment 
model for complex applications.

Conclusions 
& Next Steps

As you can see, there is a rich canvas 
to paint upon with the emergence 
of edge/fog capabilities for IoT 
networks. Once the verticals, use 
cases, and applications are chosen 
and requirements are articulated, you 
can then assemble various modular 
hardware and software components 
into node-level and network-level 
solutions. The next step is to deploy 

those systems in real-world IoT 
network applications (please see the 
sidebar for some additional thoughts 
on the deployment process). 

Considering how important IoT is 
becoming in our lives, and the 
important challenges to meet in 
making it work securely, reliably, and 
efficiently at a high scale, the edge/
fog techniques described in this 
article will soon be extremely valuable. 

Multi-Pixel Gas Sensor SGP

Wi-Fi Front End Modules

mouser.com/sensirion-sgp-gas-sensor

mouser.com/qorvo-wifi-fem



| 43  

Design
A network of fog/edge nodes are 
designed and built according to the 
principles of the preceeding article.

Installation
The nodes are taken to their 
installation sites and physically 
installed. This may involve securely 
bolting the chassis permanently in 
place, connecting network cables or 
positioning antennas, providing reliable 
power sources, and establishing 
cooling facilities.

Configuration
Every node in the network must be 
configured to establish its network 
addresses, load its security keys, 
install the correct versions of its 
platform and application software, 
and download any initial data, 
tables, content, media files, or user 
information that may be required. 
Automation of the repetitive tasks is 
particularly important at this stage.

Testing
Before bringing a node or network into service, 
it should be rigorously tested. These tests could 
include mainline functional tests, performance 
tests, stress tests under abnormal loads, or 
verifications that the fault recovery function works 
as intended. 

Commissioning
The network is given live traffic for the first time. 
Generally, it’s good to go slow here, first with small 
numbers of friendly users and the less critical 
Internet of Things (IoT) network functions and 
then gradually growing to full capacity with the full 
complement of its functions.

Long-term operations
Once the network is handling a full traffic load with 
its full complement of functions, it must be carefully 
monitored for abnormal conditions like power 
problems, environmental concerns, security threats, 
overloads, etc. Also, the system network requires 
nearly continuous updating including platform and 
application software revisions, probably on at least 
a weekly basis. Modular hardware can also be 
updated several times during the life of a node.

Deploying Edge / Fog Systems
by Charles Byers for Mouser Electronics

Once the application refinement and requirements are complete, and the 
hardware and software have been assembled, it is time to deploy a network 
of edge/fog nodes. There are several steps involved in this deployment.

These steps allow the smooth deployment of edge/fog capabilities, enabling them to be key functional 
elements of advanced IoT systems.



44 |

Early computing systems consisted 
of large and expensive mainframes 
that epitomized centralization. 
Microprocessors in the 1970s 
brought a digital revolution in 
computing that decentralized these 
resources and made computers 
accessible everywhere. But in the 
last decade, centralization returned 
with the advent of cloud computing, 
which used economies of scale to 
decrease the cost of computing and 
storage on demand.

The pendulum is now swinging once 
again to decentralization, partly due 
to the Internet of Things (IoT) and 
intelligent devices, but in a way that 
optimizes where computation and 
storage are allocated. This concept 
called fog computing considers the 
quality-of-service and where it is best 
to apply machine learning using data 
at the edge.

An example of this concept is a 
smartphone’s voice assistant. When 
you ask a question, the audio is 
recorded and sent into the cloud 
for voice recognition and language 
understanding. The request is 
processed, and the results are 
returned to you smartphone: Your 
voice is captured at the edge 
and then processed in the cloud. 
Contrast this with a self-driving 
vehicle that can’t process its images 

in the cloud and must instead 
process and understand these 
images locally to make fast decisions. 
Fog computing is about processing 
data in the right place.

Changes for Machine 
Learning at the Edge

With the rise of machine learning 
at the edge, the hardware and 
software ecosystem that supports 
data collections, processing, storage, 
and the machine learning algorithms 
is adapting to this changing 
environment. Let’s explore how this 
ecosystem is adapting to machine 
learning at the edge.

Processor Architectures

Machine learning can be 
computationally intensive, but this 
depends on the algorithms in use. 
Deep learning algorithms can require 
extreme performance per watt, 
but simpler statistical algorithms 
for classification or prediction can 
operate on tiny microcontrollers 
whose power consumption 
consumes something on the order 
of several tens of milliwatts. But 
processor vendors have taken note 
of the boom in IoT and edge machine 
learning and are now adapting to this 
challenge. Arm announced a new 
processor architecture called Project 

Trillium that includes two processors 
focused on high-performance 
machine learning and object 
detection for 60Hz video. Intel has 
also announced a Xeon processor 
designed for edge applications that 
support up to 18 cores.

Processor vendors have also seen 
instruction set opportunities for 
machine learning, optimizing and 
creating new instructions focused 
on neural networks (the basis for 
deep learning algorithms). These 
instructions combine, multiply, and 
add operations that make up the 
building block for inter-neuron 
communication.

Graphics processing units (GPUs) 
continue to be the workhorse for 
deep learning applications, whose 
architectures are built for highly-
parallelized, complex image 
processing, but new architectures 
are also being defined to accelerate 
neural networks. Google’s Tensor 
Processing Unit (TPU) is a custom 
application-specific integrated 
circuit (ASIC) whose instruction set 
was designed from the ground up 
for neural network tasks. Google 
has even tailored the TPU for use at 
the edge with a focus on a smaller 
physical footprint and lower power 
consumption.

How AI at the Edge
Will Change Engineering

Machine learning at the edge will drive changes in processor architectures, 
storage technologies, and communication interfaces and protocols. While the 
edge is commonly driven by lower-powered technologies, edge devices will 
embody a spectrum of computing and storage capabilities for machine learning. 

by M. Tim Jones for Mouser Electronics

[ C O N T ’ D  O N  P A G E  4 6 ]





46 |

Figure 1 illustrates the evolution of 
processors from low-performance 
microcontrollers to high-performance 
application-specific processors. 
Edge machine learning drives higher 
performance levels and lowers power 
consumption in application-specific 
architectures tailored for machine 
learning applications.

Storage Architectures

Arriving at a classification in a deep 
learning network involves many 
layers of multiply-add operations 
over elements of the image that are 
transformed through weights in the 
layers of networks. A reasonably sized 
deep learning network can include 
30 million weight parameters with 20 
million activations. Assuming a typical 
32-bit floating-point value, that’s a 
storage requirement of 200MB just for 
the network weights and operating 
data (excluding the application, input 
image data, etc.). The image data 
and operating data are transient and 
change over time, where the weights 
are static (but may change with the 
network’s periodical updates). This 
pattern creates a requirement for the 
types of data: Persistent versus non-
persistent. The network activations 
are performed in non-persistent 

memory, where the application 
and weights are initially stored 
in persistent memory. But these 
categorizations are being blurred 
by new technologies. NAND flash is 
replacing traditional rotating media 
in many applications, particularly in 
embedded applications that make up 
edge computing.

But traditional hard drives and 
solid state drives are not the only 
options, and new technologies are 
driving new applications. One such 
technology is called phase change 
memory (PCM), which is persistent 
like NAND, but rather than operating 
on storage interfaces, PCM with 
its higher performance can expose 
a memory interface (Table 1). This 
new type of non-volatile memory is 
called a storage-class memory. And 
while not as fast as dynamic random-
access memory (DRAM) (particularly 
for writes), PCM can operate with 
memory semantics, making it ideal 
for data like weights, which may not 
change often but are read often at a 
high-performance level.

Solid-state storage can also be 
preferential over hard disk drives 
(HDD), when considering the 
environment in which the edge device 

will exist. HDDs, with their moving 
parts, are highly susceptible to shock 
and vibration, where solid state 
devices escape this limitation.

These types of memories and storage 
technologies provide the means 
to optimize your machine learning 
dataflow, taking advantage of the read 
and write characteristics of each type. 
This means getting data closer to 
the processor, where it can be more 
efficiently processed to make faster 
decisions.

Communication Technologies

In a traditional edge solution, data is 
collected from its local environment 
and then communicated into the 
cloud for analysis. Pushing machine 
learning into the edge imbues the 
device with autonomy and the 
ability to act in isolation. This can be 
advantageous in several scenarios 
that involve limited connectivity, 
limited bandwidth, or a mismatch 
between bandwidths and the required 
amount of data to communicate for a 
given set of interactivity metrics.

But even with highly autonomous 
edge solutions, communication is 
still required for management and 

Figure 1: This image depicts the power versus performance of various processor types. (Source: Author)



| 47  

monitoring, auditing, and other 
device-specific requirements. Edge 
computing and the IoT are driving 
technologies such as 5G. Fifth-
generation wireless, or 5G, is the 
latest cellular technology that will 
support speeds of 1Gbps. 

In cases where data is not exposed 
to the cloud for analysis, a wearable 
medical device that uses a recurrent 
neural network to detect atrial 
fibrillation could use 5G to quickly 
transfer data for further analysis after 
a local prediction. Hybrid solutions 
are also useful where portions of 
machine learning are performed at the 
edge and then completed in the cloud. 
Particularly in the context of neural 
networks, input data, such as images, 
can be reduced by early layers of a 
neural network resulting in features 
(e.g., higher-level abstractions of the 
input data) that can be communicated 
to the cloud for further processing.

The growth of edge computing 
will quickly capitalize on the new 
bandwidth created by 5G to create 
new markets. Other technologies 
such as Narrowband IoT (NB-IoT) 
or low-power wide-area networks 
(LPWANs) will fill in the gaps for 
speed, range, and low-power 
requirements.

Machine Learning Algorithms 
at the Edge

It’s not just hardware technologies 
that are evolving at the edge for 
machine learning, machine learning is 
adapting as well to this environment. 

While deep learning algorithms 
tend to focus on high-performance 
hardware, the algorithms themselves 
have been tailored to resource-
constrained environments such as 
embedded systems at the edge. 
TensorFlow Lite is an example of 
scaling the popular TensorFlow 
environment as a lightweight solution 
for mobile and embedded systems. 
It optimizes deep learning through a 
variety of techniques such as fixed-
point math but can also leverage the 
Android neural networks application 
programming interface (API) for 
hardware acceleration.

Scaling down even further, the 
uTensor project focuses on bringing 
machine learning to low-power and 
low-cost microcontroller units (MCUs). 
The uTensor project has demonstrated 
a three-layer perceptron neural 
network that was trained in 256KB 
for the Modified National Institute 
of Standards and Technology 
(MNIST) handwritten digits database. 
The developers have included 
support for Arm’s Cortex machine-
learning APIs and are working on 
convolutional neural network (CNN) 
and recurrent neural network (RNN) 
implementations.

Deep learning architectures using 
CNNs are also evolving for edge-
based embedded systems. The 
SqueezeNet architecture combines 
point-wise filters and late down-
sampling to maintain a large feature 
map. But the nature of SqueezeNet’s 
layers involves squeezing the feature 
map size and later expanding it using 

a smaller number of layers. This CNN 
architecture maintains useful levels 
of accuracy (compared to AlexNet), 
but in a model that requires 500 
times fewer parameters and uses 
about 500KB of memory along with 
deep compression. Google also 
released MobileNets as an open-
source implementation for on-device 
neural network vision applications. 
MobileNets includes an interesting 
property through two local hyper-
parameters that support an efficient 
trade-off between speed and 
accuracy.

Small deep neural networks are 
being applied to a range of practical 
problems in object classification 
and detection methods, with 
acceptable accuracy in platforms like 
smartphones and similar hardware 
platforms.

Convergence
at the Edge

As the demand grows for intelligence 
at the edge, technology vendors 
and machine learning engineers 
will find new ways to satisfy 
these requirements. Through new 
technologies that evolve to support 
today’s machine learning algorithms 
or through new approaches to 
machine learning on ever-shrinking 
platforms, fog computing will merge 
algorithms and data for tomorrow’s 
applications.

STORAGE PERFORMANCE COST PERSISTANCE ENDURANCE INTERFACE
HDD + + Non-volatile ++++ Storage

NAND ++ ++ Non-volatile ++ Storage

PCM +++ ++++ Non-volatile +++ Memory

DRAM ++++ +++ Volatile ++++ Memory

Table 1: PCM is a new type of non-
volatile memory that is ideal for data 
that doesn’t change often but that’s 
read at a high-performance level. 
(Source: Author)



Embedded devices are an important 
part of edge services. They locally 
collect and process data and 
instructions from a variety of sensors 
and equipment. Thus, they require 
similar security care and attention 
as that of any other server that is 
running a full-featured operating 
system. Lower costs and increased 
performance of embedded devices 
are making it easier than ever for 
distributed systems, equipment, 
and machinery to connect through 
Internet-connected cloud services. 
Whether for use in homes and small 
businesses or to manage more 
critical industrial-control systems, 
the ability to connect seems endless 
through the use of these devices. 

Unfortunately, for these same 
reasons, the seemingly ubiquitous 
and often well-connected systems 
also attract attackers. A security 
compromise of even one embedded 
device may not only give an attacker 
access to view or manipulate 
sensitive data that the device 
has stored or processed but also 
potentially gives an attacker a 
foothold into a trusted network. 
Thankfully, the security of these 
devices is steadily improving through 
the new release of more prescriptive 
security guidance and continuous 
advances in the devices’ security 
capabilities. 

Systems engineers must understand 
the security capabilities of an 
embedded device, how the 
device operates, and what data it 
collects and processes. Only then 
can the engineers appropriately 
select, design, and deploy the right 
equipment into an environment in a 
way that remains consistent with the 
broader security goals and objectives 
of that specific environment. This 
article explores four tips for device 
security within a larger edge-cloud 
model:

•	 Keep the bigger picture in mind
•	 Know your security requirements
•	 Meet security requirements 

through effective controls
•	 Always pay attention to the 

fundamentals
 

Keep the Bigger 
Picture in Mind

When designing or implementing the 
security capabilities of a component 
or device, in your review, include the 
broader system to which it connects. 
This helps to avoid introducing 
new security vulnerabilities to or 
unknowingly inheriting risks from 
the larger system. For example, 
will the new device control critical 
machinery, either directly or through 
data collections via telemetry? 
Will it bridge two networks, such 

as connecting a private or trusted 
network to the Internet? How and 
when will people interact with the 
device, and how will individual 
components link to create larger 
systems? 

Answers to questions like these will 
help guide the design to the right 
security controls to protect not only 
the component but the broader 
system as well. Use this knowledge 
to leverage the security capabilities 
of nearby applications and platforms. 
For example, cloud services such as 
Microsoft Azure and Amazon Web 
Services (AWS) provide application 
programming interfaces (APIs) that 
make it easier to tap into the cloud 
provider’s security controls to help 
secure connected devices and 
systems. 

Document what you are learning 
as you go including the goals and 
objectives of the new component or 
system, use cases and assumptions 
that define the system, and the 
overall architecture. One particularly 
useful tool for analyzing the network 
security of a system is the data 
flow diagram (DFD), which shows 
paths of communication between 
devices and systems. The DFD, like 
the simple one shown in Figure 1, 
also includes useful metadata about 
the communication flow, such as 

Device Security in a Larger 
Edge-Cloud Model

Embedded devices require security care like all other servers running full-
featured operating systems. Reduce the risk of introducing new security 
vulnerabilities and protect the entire stack by using effective security 
controls on your devices, networks, the edge, and cloud systems.

by Jeff Fellinge for Mouser Electronics

[ C O N T ’ D  O N  P A G E  5 0 ]





50 |

what network traffic encryptions 
exist, what authentications are at 
work, what protocols are in use, and 
where devices logically reside on 
the network. DFDs are a critical part 
of threat modeling to identify where 
gaps may exist between the design 
and the security objectives.

Keeping the bigger picture in mind 
is important for everyone involved 
in the project—from the component 
engineer that designs the hardware, 
the software engineer that writes 
the firmware, the systems engineer 
that deploys the components, or 
the DevOps team that manages 
ongoing maintenance. While the 
knowledge level will vary by task 
and responsibility, each of these 
roles plays an important part in 

making a system both fully functional 
and appropriately secure. Be sure 
everyone knows their role in meeting 
the security requirements of the 
project. Many published security 
requirements are written with specific 
roles in mind, which makes it easier 
to find and assign the right people to 
own, manage, and implement controls 
that meet these requirements.

Know Your Security 
Requirements 

Your project’s security requirements 
may be defined by your corporate 
security policy, customer 
commitments, or the vertical your 
business serves. For example, if your 
system is exposed to credit card data 
or personal health information, you 

may be required to meet very specific 
security objectives and regularly 
demonstrate compliance. Different 
standards organizations, like the 
National Institute of Standards and 
Technology (NIST) and Underwriters 
Laboratory (UL), publish a variety of 
security requirements and guidance 
for network-connected products and 
cloud applications and platforms. 
While the number of individual 
requirements may seem daunting, 
fortunately, these requirements often 
overlap, and your security controls 
that meet one set of requirements 
may often satisfy others as well. 

Figure 1: This data flow diagram shows the security-related networking 
characteristics of a simple embedded device and system configuration. 
(Source: Author)



| 51  

Meet Security 
Requirements through 
Effective Controls

Security is made up of repeatable, 
effective controls. When designing 
a component for use in an edge or 
cloud scenario, a security requirement 
is only fully met when the controls 
that map to this requirement operates 
effectively across the entire stack—
that is, beginning from lower level 
components and devices up through 
the edge systems and into the 
cloud. A control failure at any point 
could break this chain and result in 
a broader security breach or system 
failure. 

Take, for example, the security 
requirements surrounding 
authentication and authorization, two 
key concepts of identity management. 
Authentication (proving who you are) 
and authorization (what the system 
allows you to do) play a critical role 
in access security not only for a 
device or system but also for services 
further up the stack, like, for example, 
the network the device connects to 
and the edge or cloud service that 
will process and store data that the 
device collects. 

Leaked or stolen credentials are a 
leading cause of system compromise. 
Often through phishing, an attacker 
will attempt to steal authentication 
credentials, such as usernames 
and passwords, then attempt to 
impersonate the victim on websites 
or access their email. Sophisticated 
attackers will use stolen credentials to 
access corporate networks and cloud 
subscriptions to steal valuable data 
or disrupt the system’s performance. 
Once an attacker has a foothold 
in a remote system, they may try 
to pivot to a more valuable target. 
Overly broad access from a poor 

authorization scheme makes pivoting 
much easier for an attacker. 

One way to reduce this risk is 
through role-based access control 
and identity isolation. For example, 
restrict identities for day-to-day 
activities, like viewing websites and 
email, from use as the same identities 
to access production networks or 
cloud subscriptions. In this manner, 
one careless misstep by a user on 
their laptop should not put your 
larger system at risk. Also, while 
attackers will use stolen credentials 
and vulnerabilities to jump from one 
system to another (lateral movement), 
they may try to access higher 
privilege, supervisory functions in a 
single system (vertical movement). 
Combat this access by restricting 
privileged accounts, such as the 
root or administrator, from remotely 
logging into your device or system, 
by logging all superuser activity, and 
by regularly reviewing the logs for 
questionable behavior. 

In an edge and cloud model, it is 
important to keep in mind that other 
people (not you) will manage the 
security controls of the systems that 
your device must connect to further 
up the stack. The accountability and 
responsibility of the security controls 
across this stacking model vary 
according to whether the systems 
are on the premise, on the cloud, or 
on a hybrid of both. You may find 
that some of these security controls 
that others manage do not meet your 
security requirements. In these cases, 
look for and implement additional 
controls to compensate for these 
gaps. 

Generally, the further up the stack the 
larger the blast radius—or number of 
systems that have the potential for 
disruption by an attack. For example, 
an attacker compromising one device 

on the network might not be able 
to cause as much damage as they 
would if they breached the network 
equipment serving multiple devices. 
Attackers know this and will focus 
their efforts to discover and breach 
targets with broader impact.

Keep this in mind as you are 
creating your architecture. Reflect 
your decisions in your DFD as you 
establish the threat model for your 
design. Here are some additional 
architectural principles to consider 
when designing your controls:

Understand Potential 
Consequences of 
Dependency

Know what authentication and 
authorization services are available for 
your project. Understand that taking a 
dependency on another service might 
have consequences, such as opening 
a firewall to allow communication with 
an upstream identity provider. Some 
Internet of Things (IoT) and embedded 
devices or services do not support 
modern authentication frameworks 
and require local accounts. In these 
cases, and where the device performs 
a critical function, additional controls 
must be put into place to further 
protect the device.

Consider the Impact and 
Potential Blast Area

Consider the impact and potential 
blast area of a compromised 
account—e.g., could an attacker 
use this identity to see some or all 
sensitive and private data? Is an 
attacker confined to the device that 
he or she breached, or could this 
person use this system or identity to 
reach other devices? For example, 
a cloud subscription compromise, 
by way of a leaked or stolen 
identity, could enable an attacker to 

[ C O N T ’ D  O N  N E X T  P A G E ]



52 |

reconfigure an entire cloud service or 
network, change code, or steal data 
from any cloud applications that the 
cloud account manages.

Enable Multi-Factor 
Authentication

For highly sensitive accounts, be 
sure to enable the elements of a 
multi-factor authentication process 
to reduce the risk of password theft. 
Such elements include:

Automated Controls
Use automated controls where 
possible to reduce long-term costs 
and avoid manual mistakes. For 

example, a centralized or federated 
identity solution is generally less 
error-prone than managing distributed, 
individual, local accounts for each 
user on every device. 

Isolated Identities
Use isolated identities based on 
function. For example, configure 
industrial-control system equipment 
with a different identity-management 
system than what operators use for 
email and web access. 

User and Access Provisioning
Decide how you want to execute 
user and access provisions. Consider 
role-based access control (RBAC) 
to limit overly broad access. For 
example, be sure you know where 
you must use access elevations, via 
a root/sudo or another superuser, 
instead of an account with lower 
privileges. Regularly audit group 
memberships (e.g., the Administrators 
group in Active Directory) and look 
for nested groups that might hide the 
true number of people with access 
privileges. 

Know Your Cloud Service’s 
Security

Know how your cloud service secures 
data access. Before you configure 
your edge devices and upload 
sensitive data, know how your cloud 
service secures access and consider 
the same security requirements 
that you use for your device and 
edge solutions. For example, how 
will your device authenticate an 
identity for cloud service? Are these 
credentials different from those of the 
operators that log into the cloud for 
maintenance? 

Always Pay Attention 
to the Fundamentals

Even when your use case may 
not warrant sophisticated security 
controls, it is always important to 
maintain strong fundamentals to 
ensure that when action is required, 
or a breach occurs, your response is 
quick and complete:

•	 Keep a complete and accurate 
inventory of every device 
connected to your network. You 
must know what you have before 
you can begin to secure it.

•	 Record and manage the right 
metadata—your device’s make, 
model, location, Internet Protocol 
(IP) address, supported protocols, 
and operating system (OS) 
versions/firmware versions. This 
is especially important when 
considering the proliferation of 
different types of systems that are 
running minimal but very capable 
firmware, including Arduino, 
Raspberry Pi, and even proprietary 
programmable logic controllers 
(PLCs).

•	 Follow your manufacturers’ 
recommendations for updating any 
system firmware and subscribe to 
published security bulletins. 

Where you may have less capable 
systems or devices performing in 
more important or critical roles, 
always remember to identify and 
implement compensatory controls to 
help isolate these devices.

More Security 
Controls

Authentication and authorization are 
just two examples of security controls 
for managing identities. There are 
many controls similar to these across 
other security domains, including: 

•	Surface area protection and 
network access control lists, like 
network and host-based firewalls

•	Encryption for data in transit and 
data at rest

•	Activity logging for unexpected 
behavior, deviation alerts

•	Vulnerability and security update 
management

•	Configuration and change 
management of the devices 
themselves



| 53  

Security 
Requirements
for Devices

Security requirements define the 
necessary controls to meet your 
security and compliance obligations. 
These requirements may be set 
internally by a corporate security 
policy or externally by independent 
standards organizations. Specific 
security requirements may also be set 
by the country, region, or jurisdiction 
in which the business operates. 
Think of all the security requirements 
as an extension of the business 
objectives and commitments made 
to customers. When designing a new 
device or product, it is important 
to understand all the sources of 
applicable security requirements.

Once you have identified your 
security requirements, you must then 
define the controls to meet these 
requirements. Many companies rely 
on internal and external assessments, 
and audits ensure these controls 
operate effectively. Certifications from 
compliance audits demonstrate to 
customers and stakeholders that a 
company, product, or service meets 
its stated objectives. And while 
these processes and tools are often 
a part of more formal governance, 
risk, and compliance (GRC) program 
used by risk managers and security 
professionals, the methodologies and 
security content can be very important 
and useful for systems designers, 
engineers, and operators alike.

Audits measure the effectiveness of 
your security controls and ultimately 
whether your security requirements 
are met. Audits can be managed 
either internally or by a third party, 
as a part of a broader certification 
process. During an audit, as an 
engineer, you may be asked to show 

how a security control operates. For 
example, you may have to create a list 
showing all the privileged users on a 
system or demonstrate how a device’s 
configuration is safeguarded from 
tampering. 

International standards describe these 
requirements for different types of 
cybersecurity frameworks. 
The International Organization for 
Standardization (ISO)/International 
Electrotechnical Commission 
(IEC) 27001 standard provides the 
requirements for an information 
security management system (ISMS) 
that can help organize your security 
program and ensure that the right 
systems and processes are in place 
to protect your business and product 
assets from identified risks. ISO/IEC 
27002 includes examples of different 
configuration options and can be a 
great source of help for new adopters.

Industry verticals like healthcare 
and banking define specific security 
requirements appropriate for their 
customers, products, and data. For 
example, if your device or product 
processes or stores credit card 
data, then you may be subject to the 
Payment Card Industry Data Security 
Standard (PCI DSS). If you process 
or store electronic protected health 
information (ePHI) in the United 
States (US), then you must meet 
the security requirements defined in 
the Health Insurance Portability and 
Accountability Act (HIPAA) and Health 
Information Technology for Economic 
and Clinical Health (HITECH) Act. 
US government customers may 
have to satisfy the Federal Risk and 
Authorization Management Program 
(FedRAMP) requirements, which 
identifies security and privacy controls 
and assessment procedures from the 
National Institute of Standards and 
Technology (NIST) Special Publication 
800-53 standard. Even if you are not 

required to meet FedRAMP, NIST 
SP 800-53 is a terrific (and free) 
resource to identify best practices 
and guidance for securing information 
systems and organizations. The latest 
version, NIST SP 800-53 Revision 4, 
defines hundreds of security controls 
across 18 different families (e.g., 
access control, identification and 
authentication, incident response, 
risk assessment, and system and 
communication protection).

Additionally, there are many 
commercially available standards 
that target more niche markets. 
The Underwriters Laboratories 
(UL) 2900-1 standard for safety, 
software cybersecurity, and network-
connectable products defines 
security requirements specifically 
for devices and products. The 
International Society of Automation 
(ISA) 99 standards also describe a 
cybersecurity management system for 
automation and control professionals 
protecting critical infrastructure. 

The amount of available information 
can be overwhelming. Several 
standards organizations have created 
control frameworks that identify 
overlap between standards and distill 
these security requirements into best 
practices and prescriptive guidance 
that are more easily adaptable to 
product designs. For example, 
the Cloud Security Alliance (CSA) 
publishes the Cloud Controls Matrix 
(CCM), a spreadsheet that defines 
security control specifications and 
architectural relevance across the 
entire stack—from the physical layer 
through the data layer. This matrix 
cross-references cloud-relevant 
security controls with other security 
standards to create a more concise 
list.



54 |

Charles C. Byers
Charles “Chuck” Byers is a Senior Technical Lead and Platform Architect with Cisco’s Enterprise 
IoT Group. He works on the architecture and implementation of Fog Computing platforms, media 
processing systems, and the Internet of Everything. Before joining Cisco Systems, he was a Bell 
Labs Fellow at Alcatel-Lucent. He has also been a leader in several standards bodies, including 
serving as a founding member of PICMG’s AdvancedTCA, AdvancedMC, and MicroTCA 
subcommittees, and currently serves as co-chair of the Architecture Framework Working Group 
and Technical Committee of the OpenFog Consortium. He holds 77 US patents.

Stephen Evanczuk
Stephen Evanczuk has more than 20 years of experience writing for and about the electronics 
industry on a wide range of topics including hardware, software, systems, and applications 
including the IoT. He received his Ph.D. in neuroscience on neuronal networks and worked in 
the aerospace industry on massively distributed secure systems and algorithm acceleration 
methods. Currently, when he’s not writing articles on technology and engineering, he’s working 
on applications of deep learning to recognition and recommendation systems. 

Jeff Fellinge
Jeff Fellinge has over 25 years’ experience in a variety of disciplines ranging from Mechanical 
Engineering to Information Security. Mr. Fellinge has experience reducing risk and improving 
security control effectiveness at some of the world’s largest datacenters. He enjoys researching 
and evaluating technologies that improve business and infrastructure security and also owns and 
operates a small metal fabrication workshop. 

Paul Golata
As a Senior Technical Content Specialist at Mouser Electronics, Paul Golata is accountable for 
contributing to the success in driving the strategic leadership, tactical execution, and overall 
product line and marketing direction for advanced technology related products. Prior to Mouser 
Electronics, he served in various Manufacturing, Marketing, and Sales related roles for Hughes 
Aircraft Company, Melles Griot, Piper Jaffray, Balzers Optics, JDSU, and Arrow Electronics. Mr. 
Golata holds a BSEET from DeVry Institute of Technology (Chicago, IL); an MBA from Pepperdine 
University (Malibu, CA); and a MDiv w/BL from Southwestern Baptist Theological Seminary (Fort 
Worth, TX).

Authors



| 55  

Bin Jiang
Bin Jiang received B.S. and M.S. degrees in communication and information engineering 
from Tianjin University, Tianjin, China.He is also a visiting scholar in Security and 
Optimization for Networked Globe Laboratory, Embry-Riddle Aeronautical University. He 
is the author of more than 30 papers, and he also served as reviewers for several journals. 
His research interests lie in the Internet of Things, edge computing, big data analytics, and 
image processing.

M. Tim Jones
M. Tim Jones is a veteran embedded firmware architect with over 30 years of architecture 
and development experience. Mr. Jones is also the author of several books and many 
articles across the spectrum of software and firmware development. His engineering 
background ranges from the development of kernels for geosynchronous spacecraft to 
embedded systems architecture and protocol development.

Chaofan Ma
Chaofan Ma received a B.S. from the School of Materials Science and Engineering, Tianjin 
University, Tianjin, China. He is currently pursuing an M.S. degree at the School of Electrical 
and Information Engineering, Tianjin University, Tianjin, China. His research interests lie in 
edge computing, wireless edge cache, and mathematical optimization for networks.

Jason Shepherd
Ranked in IoT ONE’s list of Top 100 Industrial IoT Influencers of 2018, Jason Shepherd is 
CTO for IoT and Edge Computing at Dell Technologies. In this role, Mr. Shepherd drives IoT/
Edge market and technology strategy, standards, solution planning, and strategic ecosystem 
development, including building the Dell IoT Solutions Partner Program from scratch, 
which received the 2017 and 2018 IoT Breakthrough Award for Partner Ecosystem of the 
Year. Recently, Mr. Shepherd led the creation of the EdgeX Foundry open source project to 
facilitate interoperability at the IoT edge. 

Houbing Song 
Houbing Song received a Ph.D. degree in electrical engineering from the University of 
Virginia, Charlottesville, VA, in August 2012. In August 2017, he joined the Department of 
Electrical, Computer, Software, and Systems Engineering at Embry-Riddle Aeronautical 
University, where he is currently an Assistant Professor and the Director of the Security and 
Optimization for Networked Globe Laboratory. He serves as an Associate Technical Editor 
for IEEE Communications Magazine. He is the author of more than 100 articles, editor of four 
books, and a senior member of both IEEE and ACM. 

Huifang Xu
Huifang Xu received a B.S. degree from the School of Electrical and Information Engineering, 
Tianjin University, Tianjin, China. She majored in communication engineering, and she is 
currently pursuing an M.S. degree at the School of Electrical and Information Engineering, 
Tianjin University, Tianjin, China. Her research interests lie in edge computing, wireless 
content caching, and the Internet of Things.



ORDER CONFIDENCEWITH

Engineers and Buyers find the leading brands and

the widest selection of products in stock at Mouser


